Suppr超能文献

系统分析疾病突变与蛋白质修饰的交点。

Systematic analysis of the intersection of disease mutations with protein modifications.

机构信息

Department of Bioinformatics and Computational Biology, Cell Signaling Technology Inc, Danvers, MA, USA.

Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

BMC Med Genomics. 2019 Jul 25;12(Suppl 6):109. doi: 10.1186/s12920-019-0543-2.

Abstract

BACKGROUND

Perturbed posttranslational modification (PTM) landscapes commonly cause pathological phenotypes. The Cancer Genome Atlas (TCGA) project profiles thousands of tumors allowing the identification of spontaneous cancer-driving mutations, while Uniprot and dbSNP manage genetic disease-associated variants in the human population. PhosphoSitePlus (PSP) is the most comprehensive resource for studying experimentally observed PTM sites and the only repository with daily updates on functional annotations for many of these sites. To elucidate altered PTM landscapes on a large scale, we integrated disease-associated mutations from TCGA, Uniprot, and dbSNP with PTM sites from PhosphoSitePlus. We characterized each dataset individually, compared somatic with germline mutations, and analyzed PTM sites intersecting directly with disease variants. To assess the impact of mutations in the flanking regions of phosphosites, we developed DeltaScansite, a pipeline that compares Scansite predictions on wild type versus mutated sequences. Disease mutations are also visualized in PhosphoSitePlus.

RESULTS

Characterization of somatic variants revealed oncoprotein-like mutation profiles of U2AF1, PGM5, and several other proteins, showing alteration patterns similar to germline mutations. The union of all datasets uncovered previously unknown losses and gains of PTM events in diseases unevenly distributed across different PTM types. Focusing on phosphorylation, our DeltaScansite workflow predicted perturbed signaling networks consistent with calculations by the machine learning method MIMP.

CONCLUSIONS

We discovered oncoprotein-like profiles in TCGA and mutations that presumably modify protein function by impacting PTM sites directly or by rewiring upstream regulation. The resulting datasets are enriched with functional annotations from PhosphoSitePlus and present a unique resource for potential biomarkers or disease drivers.

摘要

背景

翻译后修饰(PTM)景观的紊乱通常会导致病理表型。癌症基因组图谱(TCGA)项目对数千个肿瘤进行了分析,从而能够识别自发的癌症驱动突变,而 Uniprot 和 dbSNP 则管理着人类群体中与遗传疾病相关的变异。PhosphoSitePlus(PSP)是研究实验观察到的 PTM 位点的最全面资源,也是唯一一个针对其中许多位点的功能注释进行每日更新的存储库。为了大规模阐明改变的 PTM 景观,我们将来自 TCGA、Uniprot 和 dbSNP 的疾病相关突变与来自 PhosphoSitePlus 的 PTM 位点整合在一起。我们分别对每个数据集进行了特征描述,比较了体细胞突变与种系突变,并分析了直接与疾病变体相交的 PTM 位点。为了评估磷酸化位点侧翼区域突变的影响,我们开发了 DeltaScansite,这是一个比较野生型和突变序列上 Scansite 预测的管道。疾病突变也在 PhosphoSitePlus 中可视化。

结果

体细胞变异的特征表明,U2AF1、PGM5 和其他几种蛋白质的致癌蛋白样突变谱显示出与种系突变相似的改变模式。所有数据集的联合揭示了在不同 PTM 类型中分布不均的疾病中以前未知的 PTM 事件的丢失和获得。专注于磷酸化,我们的 DeltaScansite 工作流程预测了受扰的信号网络,与机器学习方法 MIMP 的计算结果一致。

结论

我们在 TCGA 中发现了致癌蛋白样的谱,并且突变可能通过直接影响 PTM 位点或通过重新布线上游调节来改变蛋白质功能。由此产生的数据集富含来自 PhosphoSitePlus 的功能注释,并为潜在的生物标志物或疾病驱动因素提供了独特的资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验