Suppr超能文献

PTMsnp:一个用于识别影响蛋白质翻译后修饰的驱动突变的网络服务器。

PTMsnp: A Web Server for the Identification of Driver Mutations That Affect Protein Post-translational Modification.

作者信息

Peng Di, Li Huiqin, Hu Bosu, Zhang Hongwan, Chen Li, Lin Shaofeng, Zuo Zhixiang, Xue Yu, Ren Jian, Xie Yubin

机构信息

Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Cell Dev Biol. 2020 Nov 10;8:593661. doi: 10.3389/fcell.2020.593661. eCollection 2020.

Abstract

High-throughput sequencing technologies have identified millions of genetic mutations in multiple human diseases. However, the interpretation of the pathogenesis of these mutations and the discovery of driver genes that dominate disease progression is still a major challenge. Combining functional features such as protein post-translational modification (PTM) with genetic mutations is an effective way to predict such alterations. Here, we present PTMsnp, a web server that implements a Bayesian hierarchical model to identify driver genetic mutations targeting PTM sites. PTMsnp accepts genetic mutations in a standard variant call format or tabular format as input and outputs several interactive charts of PTM-related mutations that potentially affect PTMs. Additional functional annotations are performed to evaluate the impact of PTM-related mutations on protein structure and function, as well as to classify variants relevant to Mendelian disease. A total of 4,11,574 modification sites from 33 different types of PTMs and 1,776,848 somatic mutations from TCGA across 33 different cancer types are integrated into the web server, enabling identification of candidate cancer driver genes based on PTM. Applications of PTMsnp to the cancer cohorts and a GWAS dataset of type 2 diabetes identified a set of potential drivers together with several known disease-related genes, indicating its reliability in distinguishing disease-related mutations and providing potential molecular targets for new therapeutic strategies. PTMsnp is freely available at: http://ptmsnp.renlab.org.

摘要

高通量测序技术已在多种人类疾病中鉴定出数百万个基因突变。然而,解释这些突变的发病机制以及发现主导疾病进展的驱动基因仍然是一项重大挑战。将蛋白质翻译后修饰(PTM)等功能特征与基因突变相结合是预测此类改变的有效方法。在此,我们展示了PTMsnp,这是一个网络服务器,它实现了一个贝叶斯层次模型来识别靶向PTM位点的驱动基因突变。PTMsnp接受标准变体调用格式或表格格式的基因突变作为输入,并输出几个与PTM相关的、可能影响PTM的突变的交互式图表。还进行了额外的功能注释,以评估与PTM相关的突变对蛋白质结构和功能的影响,以及对与孟德尔疾病相关的变体进行分类。来自33种不同类型PTM的总共411574个修饰位点和来自TCGA的33种不同癌症类型的1776848个体细胞突变被整合到该网络服务器中,从而能够基于PTM识别候选癌症驱动基因。PTMsnp应用于癌症队列和2型糖尿病的GWAS数据集,鉴定出一组潜在的驱动基因以及几个已知的疾病相关基因,表明其在区分疾病相关突变和为新治疗策略提供潜在分子靶点方面的可靠性。PTMsnp可在以下网址免费获取:http://ptmsnp.renlab.org

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62a0/7683509/54b9fdb32f4f/fcell-08-593661-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验