Suppr超能文献

最大熵(最可能)双螺旋和双对数螺旋轨迹在时空中。

Maximum Entropy (Most Likely) Double Helical and Double Logarithmic Spiral Trajectories in Space-Time.

机构信息

School of Computer Sciences & Electronic Engineering, University of Essex, Colchester, UK.

University of Surrey Ion Beam Centre, Guildford, UK.

出版信息

Sci Rep. 2019 Jul 25;9(1):10779. doi: 10.1038/s41598-019-46765-w.

Abstract

The ubiquity of double helical and logarithmic spirals in nature is well observed, but no explanation is ever offered for their prevalence. DNA and the Milky Way galaxy are examples of such structures, whose geometric entropy we study using an information-theoretic (Shannon entropy) complex-vector analysis to calculate, respectively, the Gibbs free energy difference between B-DNA and P-DNA, and the galactic virial mass. Both of these analytic calculations (without any free parameters) are consistent with observation to within the experimental uncertainties. We define conjugate hyperbolic space and entropic momentum co-ordinates to describe these spiral structures in Minkowski space-time, enabling a consistent and holographic Hamiltonian-Lagrangian system that is completely isomorphic and complementary to that of conventional kinematics. Such double spirals therefore obey a maximum-entropy path-integral variational calculus ("the principle of least exertion", entirely comparable to the principle of least action), thereby making them the most likely geometry (also with maximal structural stability) to be adopted by any such system in space-time. These simple analytical calculations are quantitative examples of the application of the Second Law of Thermodynamics as expressed in geometric entropy terms. They are underpinned by a comprehensive entropic action ("exertion") principle based upon Boltzmann's constant as the quantum of exertion.

摘要

自然界中双螺旋和对数螺旋的普遍存在是显而易见的,但从未有人对此类结构的普遍性给出过解释。DNA 和银河系就是这样的结构的例子,我们使用信息论(香农熵)的复向量分析来研究它们的几何熵,以分别计算 B-DNA 和 P-DNA 之间的吉布斯自由能差,以及星系的引力质量。这两个分析计算(没有任何自由参数)与实验不确定性范围内的观测结果一致。我们定义共轭双曲空间和熵动力坐标来描述闵可夫斯基时空中的这些螺旋结构,从而形成一个一致的、全息的哈密顿-拉格朗日体系,与传统运动学完全同构和互补。因此,这些双螺旋遵循最大熵路径积分变分演算(“最小努力原则”,与最小作用原理完全可比),从而使它们成为任何时空系统最有可能采用的几何形状(也具有最大的结构稳定性)。这些简单的分析计算是应用热力学第二定律的定量例子,以几何熵的形式表示。它们基于一个全面的熵作用(“努力”)原理,该原理以玻尔兹曼常数为努力的量子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a3/6658702/ea8b2ea2bc1b/41598_2019_46765_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验