Parker Michael C, Jeynes Chris
School of Computer Sciences & Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK.
Independent Researcher, Tredegar NP22 4LP, UK.
Entropy (Basel). 2023 Aug 21;25(8):1242. doi: 10.3390/e25081242.
The Principle of Indifference ('PI': the simplest non-informative prior in Bayesian probability) has been shown to lead to paradoxes since Bertrand (1889). Von Mises (1928) introduced the 'Wine/Water Paradox' as a resonant example of a 'Bertrand paradox', which has been presented as demonstrating that the PI must be rejected. We now resolve these paradoxes using a Maximum Entropy (MaxEnt) treatment of the PI that also includes information provided by Benford's 'Law of Anomalous Numbers' (1938). We show that the PI should be understood to represent a family of informationally identical MaxEnt solutions, each solution being identified with its own explicitly justified boundary condition. In particular, our solution to the Wine/Water Paradox exploits Benford's Law to construct a non-uniform distribution representing the universal constraint of scale invariance, which is a physical consequence of the Second Law of Thermodynamics.
自贝特朗(1889年)以来,无差别原则(“PI”:贝叶斯概率中最简单的非信息性先验)已被证明会导致悖论。冯·米塞斯(1928年)引入了“酒/水悖论”作为“贝特朗悖论”的一个典型例子,该例子被认为表明必须摒弃无差别原则。我们现在使用对无差别原则的最大熵(MaxEnt)处理方法来解决这些悖论,这种处理方法还包括本福德“异常数字定律”(1938年)所提供的信息。我们表明,无差别原则应被理解为代表一族信息相同的最大熵解,每个解都由其自身明确合理的边界条件确定。特别是,我们对酒/水悖论的解决方案利用本福德定律构建了一个非均匀分布,该分布代表了尺度不变性的普遍约束,这是热力学第二定律的一个物理结果。