Suppr超能文献

哈密顿量的复时间方法与阻尼谐振子的熵产生

Complex Time Approach to the Hamiltonian and the Entropy Production of the Damped Harmonic Oscillator.

作者信息

Aslani Kyriaki-Evangelia

机构信息

Department of Mechanical Engineering, University of the Peloponnese, 26334 Patras, Greece.

出版信息

Entropy (Basel). 2025 Aug 21;27(8):883. doi: 10.3390/e27080883.

Abstract

The present work applies and extends the previously developed Quantitative Geometrical Thermodynamics (QGT) formalism to the derivation of a Hamiltonian for the damped harmonic oscillator (DHO) across all damping regimes. By introducing complex time, with the real part encoding entropy production and the imaginary part governing reversible dynamics, QGT provides a unified geometric framework for irreversible thermodynamics, showing that the DHO Hamiltonian can be obtained directly from the (complex) entropy production in a simple exponential form that is generalized across all damping regimes. The derived Hamiltonian preserves a modified Poisson bracket structure and embeds thermodynamic irreversibility into the system's evolution. Moreover, the resulting expression coincides in form with the well-known Caldirola-Kanai Hamiltonian, despite arising from fundamentally different principles, reinforcing the validity of the QGT approach. The results are also compared with the GENERIC framework, showing that QGT offers an elegant alternative to existing approaches that maintains consistency with symplectic geometry. Furthermore, the imaginary time component is interpreted as isomorphic to the antisymmetric Poisson matrix through the lens of geometric algebra. The formalism opens promising avenues for extending Hamiltonian mechanics to dissipative systems, with potential applications in nonlinear dynamics, quantum thermodynamics, and spacetime algebra.

摘要

本工作应用并扩展了先前开发的定量几何热力学(QGT)形式体系,以推导所有阻尼状态下阻尼谐振子(DHO)的哈密顿量。通过引入复时间,其实部编码熵产生,虚部控制可逆动力学,QGT为不可逆热力学提供了一个统一的几何框架,表明DHO哈密顿量可以直接从(复)熵产生以一种简单的指数形式获得,该形式在所有阻尼状态下都是通用的。导出的哈密顿量保留了修正的泊松括号结构,并将热力学不可逆性嵌入到系统的演化中。此外,尽管其原理截然不同,但所得表达式在形式上与著名的卡尔迪罗拉 - 卡奈哈密顿量一致,这加强了QGT方法的有效性。结果还与GENERIC框架进行了比较,表明QGT为现有方法提供了一种优雅的替代方案,与辛几何保持一致。此外,通过几何代数的视角,虚时间分量被解释为与反对称泊松矩阵同构。该形式体系为将哈密顿力学扩展到耗散系统开辟了有前景的途径,在非线性动力学、量子热力学和时空代数中有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aec/12385472/a7a0fcd0ead4/entropy-27-00883-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验