Suppr超能文献

生物信息学方法鉴定和分析系统性硬化症的关键基因和 microRNAs。

Identification and Interaction Analysis of Key Genes and MicroRNAs in Systemic Sclerosis by Bioinformatics Approaches.

机构信息

Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.

出版信息

Curr Med Sci. 2019 Aug;39(4):645-652. doi: 10.1007/s11596-019-2086-3. Epub 2019 Jul 25.

Abstract

Systemic sclerosis (SSc) is a highly heterogeneous autoimmune disease with a high mortality rate. However, the cellular and molecular mechanisms of SSc remain unclear. Here, we identified the key hub genes and microRNAs (miRNAs) that modulate the occurrence and development of SSc. We downloaded the microarray dataset GSE95065 from the Gene Expression Omnibus (GEO) database and then analyzed the data by using GEO2R. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for functional pathway enrichment analyses of differentially expressed genes (DEGs), and Cytoscape software was used to generate the protein-protein interaction (PPI) network. In addition, OmicsNet was used to predict the miRNAs for the hub genes of SSc. As a result, 783 DEGs were identified, of which 770 genes (142 up-regulated genes and 628 down-regulated genes) were matched to the genes in SSc skin samples. Gene Ontology (GO) analyses by DAVID indicated that the up-regulated genes were mainly involved in immune response, and the down-regulated genes were greatly enriched in glycinergic synaptic transmission. In the PPI network, 22 nodes were selected as key genes, including several members of the chemokine family. Furthermore, after uploading these key genes to the OmicsNet tool, we found that hsa-miR-26b-5p might target CXCL9 and CXCL13. Moreover, we demonstrated that the hsa-miR-26b-5p inhibitor might inhibit fibrosis in TGF-β-activated fibroblasts, which would be a promising target for SSc therapy.

摘要

系统性硬化症(SSc)是一种高度异质性的自身免疫性疾病,死亡率很高。然而,SSc 的细胞和分子机制仍不清楚。在这里,我们确定了调节 SSc 发生和发展的关键枢纽基因和 microRNAs(miRNAs)。我们从基因表达综合数据库(GEO)数据库中下载了 microarray 数据集 GSE95065,并使用 GEO2R 对数据进行了分析。DAVID(数据库注释、可视化和综合发现)用于差异表达基因(DEGs)的功能途径富集分析,Cytoscape 软件用于生成蛋白质-蛋白质相互作用(PPI)网络。此外,OmicsNet 用于预测 SSc 枢纽基因的 miRNAs。结果,确定了 783 个 DEGs,其中 770 个基因(142 个上调基因和 628 个下调基因)与 SSc 皮肤样本中的基因相匹配。DAVID 的基因本体论(GO)分析表明,上调基因主要参与免疫反应,而下调基因在甘氨酸能突触传递中大量富集。在 PPI 网络中,选择了 22 个节点作为关键基因,其中包括趋化因子家族的几个成员。此外,将这些关键基因上传到 OmicsNet 工具后,我们发现 hsa-miR-26b-5p 可能靶向 CXCL9 和 CXCL13。此外,我们证明了 hsa-miR-26b-5p 抑制剂可能抑制 TGF-β 激活的成纤维细胞中的纤维化,这可能成为 SSc 治疗的有前途的靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验