Suppr超能文献

具有三明治结构的介孔硅基泡沫负载还原氧化石墨烯复合材料用于酶的固定化和生物电化学

Meso-Cellular Silicate Foam-Modified Reduced Graphene Oxide with a Sandwich Structure for Enzymatic Immobilization and Bioelectrocatalysis.

机构信息

College of Chemistry , Liaoning University , Shenyang 110036 , China.

College of Chemistry and Chemical Engineering , Shenyang Normal University , Shenyang 110034 , China.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 21;11(33):29522-29535. doi: 10.1021/acsami.9b08569. Epub 2019 Aug 9.

Abstract

An integrated composite of meso-cellular silicate foam (MCF)-modified reduced graphene oxide (MCF@rGO) was designed and synthesized based on polyethylene oxide-polypropylene oxide-polyethylene oxide (P123)-modified rGO (P123-rGO). As the polymeric template for the fabrication of mesoporous silicates, modified P123 greatly improved the affinity between the nanosheet and the in situ formed MCFs, resulting in the formation of thin layers of MCFs on both sides of rGO. Therefore, the MCFs@rGO formed exhibited a unique sandwich structure with an inner skeleton of rGO and two outer layers of MCFs. The outer modification by MCFs, with the presence of large mesopores, not only shifted the surface property of rGO from hydrophobic to hydrophilic but also offered immobilized enzymes a favorable microenvironment to maintain their bioactivity. Meanwhile, the inner skeleton of rGO compensated for the weak conductivity of MCFs, providing a pathway for the direct electron transfer (DET) of various redox enzymes or proteins, such as hemoglobin (Hb), horseradish peroxidase, glucose oxidase (GOD), and cholesterol oxidase. It was found that the DET signal obtained from Hb-MCFs@rGO/glassy carbon electrode (GCE) was much larger than the sum of the signals from two components-based modified electrodes of Hb-P123-rGO/GCE and Hb-MCFs/GCE. A similar improvement in DET signal was also observed using GOD-MCFs@rGO/GCE. The significant enhancement of DET signals for both protein electrodes can be ascribed to the synergistic effects generated from the integration of the two components, one of which enhances biocompatibility and the other enhances conductivity. The bioelectrocatalytic performance of Hb and GOD electrodes was further investigated. As for Hb-MCFs@rGO/GCE, the GOD electrode displayed excellent analytical performance for the detection of hydrogen peroxide (HO), including a good sensitivity of 0.25 μA μmol L cm, a low detection limit of 63.6 nmol L based on S/N = 3, and a low apparent Michaelis-Menten constant () of 49.05 μmol L. GOD-MCFs@rGO/GCE also exhibited good analytical performance for the detection of glucose, with a wide linear range of 0.25-8.0 mmol L. In addition, blood glucose detection in samples of human serum was successfully achieved using GOD-MCFs@rGO/GCE with a low quantification limit.

摘要

基于聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(P123)改性氧化石墨烯(P123-rGO)设计并合成了介孔硅酸盐泡沫(MCF)修饰的还原氧化石墨烯(MCF@rGO)的复合材料。作为介孔硅酸盐制备的聚合物模板,改性 P123 极大地提高了纳米片与原位形成的 MCF 之间的亲和力,导致 MCF 在 rGO 的两侧形成薄的 MCF 层。因此,形成的 MCF@rGO 具有独特的三明治结构,内骨架为 rGO,外两层为 MCF。MCF 的外层修饰,具有大的介孔,不仅将 rGO 的表面性质从疏水性转变为亲水性,而且为固定化酶提供了一个有利于保持其生物活性的微环境。同时,rGO 的内骨架弥补了 MCF 较弱的导电性,为各种氧化还原酶或蛋白质(如血红蛋白(Hb)、辣根过氧化物酶、葡萄糖氧化酶(GOD)和胆固醇氧化酶)的直接电子转移(DET)提供了途径。研究发现,从血红蛋白 MCF@rGO/玻碳电极(GCE)获得的 DET 信号远大于基于血红蛋白 P123-rGO/GCE 和血红蛋白 MCFs/GCE 的两个组件改性电极信号的总和。使用 GOD-MCFs@rGO/GCE 也观察到类似的 DET 信号增强。两种蛋白质电极的 DET 信号的显著增强归因于两个组件的协同作用,其中一个增强了生物相容性,另一个增强了导电性。进一步研究了血红蛋白和 GOD 电极的生物电化学催化性能。对于血红蛋白 MCF@rGO/GCE,GOD 电极对过氧化氢(HO)的检测表现出优异的分析性能,包括灵敏度为 0.25 μA μmol L cm,基于 S/N = 3 的检测限为 63.6 nmol L,和低表观米氏常数()为 49.05 μmol L。GOD-MCFs@rGO/GCE 对葡萄糖的检测也表现出良好的分析性能,线性范围宽,为 0.25-8.0 mmol L。此外,使用 GOD-MCFs@rGO/GCE 成功实现了人血清样品中血糖的检测,定量限低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验