Suppr超能文献

利用精准医学估计外伤性四肢创伤手术闭合的时机。

Utilizing Precision Medicine to Estimate Timing for Surgical Closure of Traumatic Extremity Wounds.

机构信息

Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD.

Surgical Critical Care Initiative (SC2i), Uniformed Services University of Health Sciences, Bethesda, MD.

出版信息

Ann Surg. 2019 Sep;270(3):535-543. doi: 10.1097/SLA.0000000000003470.

Abstract

BACKGROUND

Both the frequency and high complication rates associated with extremity wounds in recent military conflicts have highlighted the need for clinical decision support tools (CDST) to decrease time to wound closure and wound failure rates.

METHODS

Machine learning was used to estimate both successful wound closure (based on penultimate debridement biomarker data) and the necessary number of surgical debridements (based on presentation biomarkers) in 73 service members treated according to military guidelines based on clinical data and the local/systemic level of 32 cytokines. Models were trained to estimate successful closure including an additional 8 of 80 civilian patients with similar injury patterns. Previous analysis has demonstrated the potential to reduce the number of operative debridements by 2, with resulting decreases in ICU and hospital LOS, while decreasing the rate of wound failure.

RESULTS

Analysis showed similar cytokine responses when civilians followed a military-like treatment schedule with surgical debridements every 24 to 72 hours. A model estimating successful closure had AUC of 0.89. Model performance in civilians degraded when these had a debridement interval > 72 hours (73 of the 80 civilians). A separate model estimating the number of debridements required to achieve successful closure had a multiclass AUC of 0.81.

CONCLUSION

CDSTs can be developed using biologically compatible civilian and military populations as cytokine response is highly influenced by surgical treatment. Our CDSTs may help identify who may require serial debridements versus early closure, and precisely when traumatic wounds should optimally be closed.

摘要

背景

近期军事冲突中四肢创伤的高频率和高并发症发生率突显了临床决策支持工具(CDST)的必要性,以减少伤口闭合时间和伤口失败率。

方法

使用机器学习来估计 73 名根据军事指南治疗的服务成员的成功伤口闭合(基于倒数第二次清创生物标志物数据)和必要的清创次数(基于表现生物标志物),并根据临床数据和局部/全身 32 种细胞因子的水平。模型经过训练,可以在包含另外 80 名具有类似损伤模式的平民患者的情况下估计成功闭合。之前的分析表明,有可能减少 2 次手术清创的次数,从而降低 ICU 和住院 LOS,同时降低伤口失败率。

结果

分析表明,平民遵循类似于军事的治疗方案,每 24 至 72 小时进行一次手术清创,细胞因子反应相似。估计成功闭合的模型 AUC 为 0.89。当这些患者的清创间隔>72 小时时(80 名平民中的 73 名),模型在平民中的性能会降低。一个单独的估计成功闭合所需清创次数的模型具有多类 AUC 为 0.81。

结论

可以使用生物学相容的平民和军事人群来开发 CDST,因为细胞因子反应受手术治疗的影响很大。我们的 CDST 可能有助于确定谁需要连续清创术而不是早期闭合,以及创伤性伤口何时需要最佳闭合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验