Suppr超能文献

解析β1,3-1,4-葡聚糖的人肠道共生菌卵形拟杆菌表面糖结合蛋白的分子识别。

Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus.

机构信息

UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.

Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.

出版信息

Microbiol Spectr. 2021 Dec 22;9(3):e0182621. doi: 10.1128/Spectrum.01826-21. Epub 2021 Nov 24.

Abstract

A multigene polysaccharide utilization locus (PUL) encoding enzymes and surface carbohydrate (glycan)-binding proteins (SGBPs) was recently identified in prominent members of in the human gut and characterized in Bacteroides ovatus. This PUL-encoded system specifically targets mixed-linkage β1,3-1,4-glucans, a group of diet-derived carbohydrates that promote a healthy microbiota and have potential as prebiotics. The BoSGBP-A protein encoded by the gene is a SusD-like protein that plays a key role in the PUL's specificity and functionality. Here, we perform a detailed analysis of the molecular determinants underlying carbohydrate binding by BoSGBP-A, combining carbohydrate microarray technology with quantitative affinity studies and a high-resolution X-ray crystallography structure of the complex of BoSGBP-A with a β1,3-1,4-nonasaccharide. We demonstrate its unique binding specificity toward β1,3-1,4-gluco-oligosaccharides, with increasing binding affinities up to the octasaccharide and dependency on the number and position of β1,3 linkages. The interaction is defined by a 41-Å-long extended binding site that accommodates the oligosaccharide in a mode distinct from that of previously described bacterial β1,3-1,4-glucan-binding proteins. In addition to the shape complementarity mediated by CH-π interactions, a complex hydrogen bonding network complemented by a high number of key ordered water molecules establishes additional specific interactions with the oligosaccharide. These support the twisted conformation of the β-glucan backbone imposed by the β1,3 linkages and explain the dependency on the oligosaccharide chain length. We propose that the specificity of the PUL conferred by BoSGBP-A to import long β1,3-1,4-glucan oligosaccharides to the bacterial periplasm allows to outcompete bacteria that lack this PUL for utilization of β1,3-1,4-glucans. With the knowledge of bacterial gene systems encoding proteins that target dietary carbohydrates as a source of nutrients and their importance for human health, major efforts are being made to understand carbohydrate recognition by various commensal bacteria. Here, we describe an integrative strategy that combines carbohydrate microarray technology with structural studies to further elucidate the molecular determinants of carbohydrate recognition by BoSGBP-A, a key protein expressed at the surface of Bacteroides ovatus for utilization of mixed-linkage β1,3-1,4-glucans. We have mapped at high resolution interactions that occur at the binding site of BoSGBP-A and provide evidence for the role of key water-mediated interactions for fine specificity and affinity. Understanding at the molecular level how commensal bacteria, such as prominent members of , can differentially utilize dietary carbohydrates with potential prebiotic activities will shed light on possible ways to modulate the microbiome to promote human health.

摘要

一个多基因多糖利用基因座(PUL)编码酶和表面碳水化合物(聚糖)结合蛋白(SGBP)最近在人类肠道中的突出成员中被发现,并在拟杆菌属中得到了表征。这个由 PUL 编码的系统专门针对混合连接β1,3-1,4-葡聚糖,这是一组饮食衍生的碳水化合物,可促进健康的微生物群,并有可能作为益生元。由 基因编码的 BoSGBP-A 蛋白是一种 SusD 样蛋白,在 PUL 的特异性和功能中发挥关键作用。在这里,我们通过碳水化合物微阵列技术与定量亲和研究以及 BoSGBP-A 与β1,3-1,4-壬糖的复合物的高分辨率 X 射线晶体结构相结合,对 BoSGBP-A 碳水化合物结合的分子决定因素进行了详细分析。我们证明了它对β1,3-1,4-葡糖低聚糖的独特结合特异性,结合亲和力增加到八聚体,并依赖于β1,3 键的数量和位置。这种相互作用由一个 41Å 长的扩展结合位点定义,该位点以与先前描述的细菌β1,3-1,4-葡聚糖结合蛋白不同的模式容纳低聚糖。除了由 CH-π 相互作用介导的形状互补性之外,复杂的氢键网络由大量关键有序水分子补充,与低聚糖建立了额外的特定相互作用。这些支持由β1,3 键引起的β-葡聚糖主链的扭曲构象,并解释了对低聚糖链长的依赖性。我们提出,由 BoSGBP-A 赋予 PUL 的特异性,可将长链β1,3-1,4-葡聚糖低聚糖导入细菌周质,使能够与缺乏这种 PUL 的细菌竞争,以利用β1,3-1,4-葡聚糖。随着人们对编码靶向饮食碳水化合物作为营养源的细菌基因系统的了解,以及它们对人类健康的重要性,人们正在做出重大努力来理解各种共生菌对碳水化合物的识别。在这里,我们描述了一种综合策略,该策略将碳水化合物微阵列技术与结构研究相结合,以进一步阐明 BoSGBP-A 碳水化合物识别的分子决定因素,BoSGBP-A 是拟杆菌属表面表达的关键蛋白,用于利用混合连接β1,3-1,4-葡聚糖。我们已经以高分辨率绘制了在 BoSGBP-A 结合位点发生的相互作用,并提供了关键水介导相互作用在精细特异性和亲和力中的作用的证据。在分子水平上理解,如肠道中突出的成员等共生菌如何能够不同地利用具有潜在益生元活性的饮食碳水化合物,将为调节微生物组以促进人类健康提供启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8abb/8612152/afb06f50dc05/spectrum.01826-21-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验