MESA+ Institute for Nanotechnology , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands.
CNR-IOM DEMOCRITOS , Istituto Officina dei Materiali and SISSA Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , I-34136 Trieste , Italy.
J Chem Theory Comput. 2019 Sep 10;15(9):4896-4906. doi: 10.1021/acs.jctc.9b00476. Epub 2019 Aug 12.
We employ quantum Monte Carlo to obtain chemically accurate vertical and adiabatic excitation energies, and equilibrium excited-state structures for the small, yet challenging, formaldehyde and thioformaldehyde molecules. A key ingredient is a robust protocol to obtain balanced ground- and excited-state Jastrow-Slater wave functions at a given geometry, and to maintain such a balanced description as we relax the structure in the excited state. We use determinantal components generated via a selected configuration interaction scheme which targets the same second-order perturbation energy correction for all states of interest at different geometries, and fully optimize all variational parameters in the resultant Jastrow-Slater wave functions. Importantly, the excitation energies as well as the structural parameters in the ground and excited states are converged with very compact wave functions comprising few thousand determinants in a minimally augmented double-ζ basis set. These results are obtained already at the variational Monte Carlo level, the more accurate diffusion Monte Carlo method yielding only a small improvement in the adiabatic excitation energies. We find that matching Jastrow-Slater wave functions with similar variances can yield excitation energies compatible with our best estimates; however, the variance-matching procedure requires somewhat larger determinantal expansions to achieve the same accuracy, and it is less straightforward to adapt during structural optimization in the excited state.
我们采用量子蒙特卡罗方法获得了甲醛和硫代甲醛这两个小分子具有化学准确性的垂直激发能和绝热激发能,以及平衡激发态结构。一个关键的要素是一种稳健的方案,用于在给定的几何形状下获得平衡的基态和激发态 Jastrow-Slater 波函数,并在激发态中放松结构时保持这种平衡描述。我们使用通过选定的组态相互作用方案生成的行列式分量,该方案针对不同几何形状的所有感兴趣的状态的相同二阶微扰能量校正,并完全优化了所得 Jastrow-Slater 波函数中的所有变分参数。重要的是,激发能以及基态和激发态中的结构参数都可以通过非常紧凑的波函数收敛,这些波函数在最小增广的双ζ基组中仅包含几千个行列式。这些结果已经在变分蒙特卡罗水平上获得,更准确的扩散蒙特卡罗方法仅在绝热激发能方面略有改进。我们发现,与具有相似方差的 Jastrow-Slater 波函数匹配可以产生与我们最佳估计值兼容的激发能;然而,方差匹配过程需要更大的行列式展开才能达到相同的精度,并且在激发态的结构优化过程中不太容易适应。