Kossoski Fábris, Damour Yann, Loos Pierre-François
Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
J Phys Chem Lett. 2022 May 19;13(19):4342-4349. doi: 10.1021/acs.jpclett.2c00730. Epub 2022 May 10.
We propose a novel partitioning of the Hilbert space, hierarchy configuration interaction (hCI), where the excitation degree (with respect to a given reference determinant) and the seniority number (i.e., the number of unpaired electrons) are combined in a single hierarchy parameter. The key appealing feature of hCI is that each hierarchy level accounts for all classes of determinants whose number shares the same scaling with system size. By surveying the dissociation of multiple molecular systems, we found that the overall performance of hCI usually exceeds or, at least, parallels that of excitation-based CI. For higher orders of hCI and excitation-based CI, the additional computational burden related to orbital optimization usually does not compensate the marginal improvements compared with results obtained with Hartree-Fock orbitals. The exception is orbital-optimized CI with single excitations, a minimally correlated model displaying the qualitatively correct description of single bond breaking at a very modest computational cost.
我们提出了一种希尔伯特空间的新型划分方法——层级组态相互作用(hCI),其中激发度(相对于给定的参考行列式)和 seniority 数(即未配对电子的数量)被组合在一个单一的层级参数中。hCI 的关键吸引人之处在于,每个层级水平都考虑了所有行列式类别,其数量与系统大小具有相同的标度关系。通过研究多个分子系统的解离,我们发现 hCI 的整体性能通常超过或至少与基于激发的 CI 相当。对于更高阶的 hCI 和基于激发的 CI,与轨道优化相关的额外计算负担通常无法弥补与使用哈特里 - 福克轨道获得的结果相比的边际改进。例外情况是具有单激发的轨道优化 CI,这是一个最小相关模型,以非常适度的计算成本对单键断裂进行了定性正确的描述。