Hermann Jan, Spencer James, Choo Kenny, Mezzacapo Antonio, Foulkes W M C, Pfau David, Carleo Giuseppe, Noé Frank
Microsoft Research AI4Science, Berlin, Germany.
FU Berlin, Department of Mathematics and Computer Science, Berlin, Germany.
Nat Rev Chem. 2023 Oct;7(10):692-709. doi: 10.1038/s41570-023-00516-8. Epub 2023 Aug 9.
Deep learning methods outperform human capabilities in pattern recognition and data processing problems and now have an increasingly important role in scientific discovery. A key application of machine learning in molecular science is to learn potential energy surfaces or force fields from ab initio solutions of the electronic Schrödinger equation using data sets obtained with density functional theory, coupled cluster or other quantum chemistry (QC) methods. In this Review, we discuss a complementary approach using machine learning to aid the direct solution of QC problems from first principles. Specifically, we focus on quantum Monte Carlo methods that use neural-network ansatzes to solve the electronic Schrödinger equation, in first and second quantization, computing ground and excited states and generalizing over multiple nuclear configurations. Although still at their infancy, these methods can already generate virtually exact solutions of the electronic Schrödinger equation for small systems and rival advanced conventional QC methods for systems with up to a few dozen electrons.
深度学习方法在模式识别和数据处理问题上优于人类能力,如今在科学发现中发挥着越来越重要的作用。机器学习在分子科学中的一个关键应用是利用通过密度泛函理论、耦合簇或其他量子化学(QC)方法获得的数据集,从电子薛定谔方程的从头算解中学习势能面或力场。在本综述中,我们讨论一种互补方法,即使用机器学习辅助从第一原理直接解决QC问题。具体来说,我们关注量子蒙特卡罗方法,该方法使用神经网络假设来求解电子薛定谔方程,包括一次和二次量子化,计算基态和激发态,并在多个核构型上进行泛化。尽管这些方法仍处于起步阶段,但它们已经可以为小系统生成几乎精确的电子薛定谔方程解,对于包含多达几十个电子的系统,其性能可与先进的传统QC方法相媲美。