Martel M, Negrín M A, Vázquez-Polo F J
Dpt. of Quantitative Methods and TiDES Institute, U. of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.
J Appl Stat. 2022 Jun 8;50(13):2760-2776. doi: 10.1080/02664763.2022.2084719. eCollection 2023.
The meta-analysis of two trials is valuable in many practical situations, such as studies of rare and/or orphan diseases focussed on a single intervention. In this context, additional concerns, like small sample size and/or heterogeneity in the results obtained, might make standard frequentist and Bayesian techniques inappropriate. In a meta-analysis, moreover, the presence of between-sample heterogeneity adds model uncertainty, which must be taken into consideration when drawing inferences. We suggest that the most appropriate way to measure this heterogeneity is by clustering the samples and then determining the posterior probability of the cluster models. The meta-inference is obtained as a mixture of all the meta-inferences for the cluster models, where the mixing distribution is the posterior model probability. We present a simple two-component form of Bayesian model averaging that is unaffected by characteristics such as small study size or zero-cell counts, and which is capable of incorporating uncertainties into the estimation process. Illustrative examples are given and analysed, using real sparse binomial data.
在许多实际情况中,对两项试验进行荟萃分析很有价值,例如针对单一干预措施的罕见病和/或孤儿病研究。在这种情况下,其他问题,如样本量小和/或所得结果的异质性,可能会使标准的频率论和贝叶斯技术不适用。此外,在荟萃分析中,样本间异质性的存在增加了模型的不确定性,在进行推断时必须考虑到这一点。我们建议,衡量这种异质性的最合适方法是对样本进行聚类,然后确定聚类模型的后验概率。元推断是通过对聚类模型的所有元推断进行混合得到的,其中混合分布是后验模型概率。我们提出了一种简单的两成分形式的贝叶斯模型平均法,它不受研究规模小或零单元格计数等特征的影响,并且能够将不确定性纳入估计过程。使用实际的稀疏二项式数据给出并分析了示例。