Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.
Interdisciplinary Centre for Electron Microscopy (CIME) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland.
Nano Lett. 2019 Aug 14;19(8):5754-5761. doi: 10.1021/acs.nanolett.9b02396. Epub 2019 Aug 6.
The relationship between composition and plasmonic properties in noble metal nanoalloys is still largely unexplored. Yet, nanoalloys of noble metals, such as gold, with transition elements, such as iron, have unique properties and a number of potential applications, ranging from nanomedicine to magneto-plasmonics and plasmon-enhanced catalysis. Here, we investigate the localized surface plasmon resonance at the level of the single Au-Fe nanoparticle by applying a strategy that combines experimental measurements using near field electron energy loss spectroscopy with theoretical studies via a full wave numerical analysis and density functional theory calculations of electronic structure. We show that, as the iron fraction increases, the plasmon resonance is blue-shifted and significantly damped, as a consequence of the changes in the electronic band structure of the alloy. This allows the identification of three relevant phenomena to be considered in the design and realization of any plasmonic nanoalloy, specifically: the appearance of new states around the Fermi level; the change in the free electron density of the metal; and the blue shift of interband transitions. Overall, this study provides new opportunities for the control of the optical response in Au-Fe and other plasmonic nanoalloys, which are useful for the realization of magneto-plasmonic devices for molecular sensing, thermo-plasmonics, bioimaging, photocatalysis, and the amplification of spectroscopic signals by local field enhancement.
贵金属纳米合金中组成与等离子体特性之间的关系在很大程度上仍未得到探索。然而,贵金属(如金)与过渡金属(如铁)的纳米合金具有独特的性质和许多潜在的应用,从纳米医学到磁等离子体学和等离子体增强催化。在这里,我们通过应用一种结合了使用近场电子能量损失光谱进行实验测量与通过全波数值分析和电子结构的密度泛函理论计算进行理论研究的策略,来研究单个 Au-Fe 纳米颗粒的局域表面等离子体共振。我们表明,随着铁分的增加,等离子体共振发生蓝移并显著阻尼,这是合金电子能带结构变化的结果。这使得可以识别在设计和实现任何等离子体纳米合金时需要考虑的三个相关现象,具体来说:费米能级附近出现新状态;金属自由电子密度的变化;以及带间跃迁的蓝移。总的来说,这项研究为控制 Au-Fe 和其他等离子体纳米合金的光学响应提供了新的机会,这对于实现用于分子传感、热等离子体学、生物成像、光催化和通过局部场增强放大光谱信号的磁等离子体学器件非常有用。