LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France.
ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France.
Brain Res Bull. 2019 Oct;152:202-211. doi: 10.1016/j.brainresbull.2019.07.020. Epub 2019 Jul 23.
The development of cellular microenvironments suitable for neural tissue engineering purposes involves a plethora of research fields ranging from cell biology to biochemistry, neurosciences, physics, nanotechnology, mechanobiology. In the last two decades, this multi-disciplinary activity has led to the emergence of numerous strategies to create architectures capable of reproducing the topological, biochemical and mechanical properties of the extracellular matrix present in the central (CNS) and peripheral nervous system (PNS). Some of these approaches have succeeded in inducing the functional recovery of damaged areas in the CNS and the PNS to address the current lack of effective medical treatments for this type of injury. In this review, we analyze recent developments in the realization of two-dimensional and three-dimensional neuronal scaffolds following either top-down or bottom-up approaches. After providing an overview of the different fabrication techniques employed for tailoring the biomaterials, we draw on specific examples to describe the major features of the developed approaches. We then conclude with prospective proof of concept studies on guiding scaffolds and regenerative models on macro-scale brain implants targeting neural regeneration.
为了满足神经组织工程的目的,细胞微环境的开发涉及到从细胞生物学到生物化学、神经科学、物理学、纳米技术、机械生物学等众多研究领域。在过去的二十年中,这种多学科的活动已经产生了许多策略,以创建能够复制中枢神经系统(CNS)和周围神经系统(PNS)中存在的细胞外基质的拓扑、生化和机械特性的结构。其中一些方法已经成功地诱导了 CNS 和 PNS 中受损区域的功能恢复,以解决目前对此类损伤缺乏有效治疗方法的问题。在这篇综述中,我们分析了采用自上而下或自下而上方法实现二维和三维神经元支架的最新进展。在概述了用于定制生物材料的不同制造技术之后,我们将通过具体示例来描述所开发方法的主要特点。最后,我们将对引导支架和再生模型进行前瞻性概念验证研究,这些支架和再生模型针对的是宏观脑植入物上的神经再生。