Ghent University, Department of Animal Sciences and Aquatic Ecology, Coupure Links 653, B-9000, Ghent, Belgium.
Ghent University, Department of Animal Sciences and Aquatic Ecology, Coupure Links 653, B-9000, Ghent, Belgium.
Water Res. 2019 Oct 15;163:114863. doi: 10.1016/j.watres.2019.114863. Epub 2019 Jul 16.
Environmental and measure implementation costs are two key factors to be considered by river managers in decision making. To balance effects and costs of an action, practitioners can rely on diagnostic analysis of presence/absence freshwater species distribution models (SDMs) trained to over- or underestimating species presence. Prevalence-adjusted model training aims to balance under- and overestimation depending on study objectives and training data characteristics. The objective of minimising under- and overestimation is a typical example of multi-objective optimisation (MOO). The aim of this paper is to address, for the first time, the practice of MOO-based prevalence-adjusted SDM training for freshwater decision management. In a numerical experiment, the use of Pareto-based MOO, specifically the non-dominated sorting genetic algorithm II (NSGA-II), is compared to commonly-used single-objective optimisation. SDMs for 11 pollution-sensitive freshwater macroinvertebrate species are trained with a subset of the Limnodata, a large data set holding records in the Netherlands over 30 years at 20,000 locations. An increase of two to four times is observed for the ability to identify a large range distribution of the solutions in the Pareto space, when using NSGA-II counter to repeated single-objective optimisation, this by increasing the average runtime with only four percent for a single run. In addition, the use of NSGA-II is found to be effective to identify reliable SDMs useful for diagnostic analysis. By applying and comparing a broad range of MOO methodologies for prevalence-adjusted model training, we believe a closer collaboration between model developers and freshwater managers can be facilitated and environmental standard limits can be set on a more objective basis. In conclusion, the use of MOO for prevalence-adjusted model training is assessed as a valuable tool to support river - and potentially all environmental - decision making.
环境和测量实施成本是河流管理者在决策中需要考虑的两个关键因素。为了平衡行动的效果和成本,从业者可以依靠对存在/不存在的淡水物种分布模型(SDM)进行诊断分析,这些模型是经过过度或低估物种存在训练的。基于流行率调整的模型训练旨在根据研究目标和训练数据的特点来平衡低估和高估。最小化低估和高估的目标是多目标优化(MOO)的一个典型例子。本文的目的是首次解决基于 MOO 的流行率调整 SDM 培训在淡水决策管理中的应用。在数值实验中,使用基于 Pareto 的 MOO,特别是非支配排序遗传算法 II(NSGA-II),与常用的单目标优化进行了比较。使用 Limnodata 的一个子集对 11 种对污染敏感的淡水大型无脊椎动物物种进行了 SDM 训练,Limnodata 是一个在荷兰拥有超过 30 年、20000 个地点记录的大型数据集。当使用 NSGA-II 替代重复的单目标优化时,在 Pareto 空间中识别大范围解决方案的能力增加了两到四倍,这通过将单个运行的平均运行时间仅增加四个百分点来实现。此外,发现 NSGA-II 的使用可以有效地识别用于诊断分析的可靠 SDM。通过应用和比较广泛的 MOO 方法进行流行率调整模型训练,我们相信可以促进模型开发人员和淡水管理者之间的更紧密合作,并可以更客观地设置环境标准限制。总之,将 MOO 用于流行率调整模型训练被评估为支持河流——以及潜在的所有环境——决策的有价值的工具。