OMsignal Inc.
Physiol Meas. 2019 Sep 3;40(8):084005. doi: 10.1088/1361-6579/ab3632.
In this work, a dense recurrent convolutional neural network (DRCNN) was constructed to detect sleep disorders including arousal, apnea and hypopnea using polysomnography (PSG) measurement channels provided in the 2018 PhysioNet Challenge database.
Our model structure is composed of multiple dense convolutional units (DCU) followed by a bidirectional long-short term memory (LSTM) layer followed by a softmax output layer. The sleep events, including sleep stages, arousal regions and multiple types of apnea and hypopnea, are manually annotated by experts, which enables us to train our proposed network using a multi-task learning mechanism. Three binary cross-entropy loss functions, corresponding to sleep/wake, target arousal and apnea-hypopnea/normal detection tasks, are summed up to generate our overall network loss function that is optimized using the Adam method. Our model performance was evaluated using two metrics: the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC). To measure our model generalization, 4-fold cross-validation was also performed. For training, our model was applied to full night recording data.
Finally, the average AUPRC and AUROC values associated with the arousal detection task were 0.505 and 0.922, respectively, on our testing dataset. An ensemble of four models trained on different data folds improved the AUPRC and AUROC to 0.543 and 0.931, respectively.
Our proposed algorithm achieved the first place in the official stage of the 2018 PhysioNet Challenge for detecting sleep arousals with an AUPRC of 0.54 on the blind testing dataset.
本研究构建了一个密集递归卷积神经网络(DRCNN),以利用 2018 年 PhysioNet 挑战赛数据库中提供的多导睡眠图(PSG)测量通道检测包括觉醒、呼吸暂停和低通气在内的睡眠障碍。
我们的模型结构由多个密集卷积单元(DCU)组成,其后是双向长短期记忆(LSTM)层,最后是一个 softmax 输出层。睡眠事件,包括睡眠阶段、觉醒区域和多种类型的呼吸暂停和低通气,由专家手动标注,这使我们能够使用多任务学习机制训练我们提出的网络。三个二分类交叉熵损失函数,分别对应于睡眠/觉醒、目标觉醒和呼吸暂停-低通气/正常检测任务,被加起来生成我们的整体网络损失函数,该函数使用 Adam 方法进行优化。我们使用两个指标评估模型性能:精确召回曲线下的面积(AUPRC)和接收者操作特征曲线下的面积(AUROC)。为了衡量模型的泛化能力,还进行了 4 折交叉验证。对于训练,我们的模型应用于整晚的记录数据。
最后,在我们的测试数据集上,与觉醒检测任务相关的平均 AUPRC 和 AUROC 值分别为 0.505 和 0.922。在不同数据折上训练的四个模型的集成将 AUPRC 和 AUROC 提高到了 0.543 和 0.931。
我们提出的算法在 2018 年 PhysioNet 挑战赛的官方阶段中以 0.54 的 AUPRC 在盲测数据集上检测睡眠觉醒方面获得了第一名。