Colombo North Teaching Hospital, Ragama, Sri Lanka.
Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
BMC Gastroenterol. 2019 Jul 26;19(1):134. doi: 10.1186/s12876-019-1054-5.
In cirrhosis upper-gastrointestinal-endoscopy (UGIE) identifies oesophageal varices (OV). UGIE is unavailable in most resource-limited settings. Therefore, we assessed prediction of presence of OV using hematological parameters (HP) and Child-Turcott-Pugh (CTP) class.
A prospective study was carried out on consecutive, consenting, newly-diagnosed patients with cirrhosis, in the University Medical Unit, Colombo North Teaching Hospital, Ragama, Sri Lanka from April 2014-April 2016. All patients had UGIE to evaluate presence and degree of OV, prior to appropriate therapy. HP (full blood count with indices using automated analyzer and peripheral blood smear using Leishmann stain) and CTP class were assessed on admission. Linear logistic regression model was developed to predict OV using HP and CTP class.
54-patients with cirrhosis were included [14(26%), 24(44%) and 16(30%) belonged to CTP class A, B and C respectively]. 37 had varices [CTP-A 4/14(26.6%), CTP-B 19/24(79.2%), CTP-C 14/16(87.5%)] on UGIE. Generalized linear model fitting showed decreasing percentage of small platelets (%SP) (P = 0.002), CTP-B (P = 0.003) and CTP-C (P = 0.003) compared to CTP-A had higher probability of having OV. The model predicts the log odds for having OV = - 0.189 - (0.046*%SP) + 2.9 [if CTP-B] + 3.7 [if CTP-C]. Based on receiver operating characteristic (ROC) analysis, a model value > - 0.19 was selected as the cutoff point to predict OV with 89%-sensitivity, 76%-specificity, 89%-positive predictive value and 76%-negative predictive value.
We constructed a model using %SP on peripheral blood smear and CTP class. This model may be used to predict the presence of OV, in newly diagnosed patients with cirrhosis, with acceptable sensitivity and specificity, to prioritize the patients who deserve early UGIE in limited resource settings.
在肝硬化患者中,上消化道内镜(UGIE)可识别食管静脉曲张(OV)。但在大多数资源有限的地区,UGIE 无法普及。因此,我们评估了使用血液学参数(HP)和 Child-Turcott-Pugh(CTP)分级来预测 OV 存在的可能性。
这是一项在 2014 年 4 月至 2016 年 4 月期间,在斯里兰卡拉格马的科伦坡北部教学医院大学医学系,对连续同意的新诊断为肝硬化的患者进行的前瞻性研究。所有患者在接受适当治疗之前,均通过 UGIE 评估 OV 的存在和严重程度。入院时评估 HP(使用自动分析仪进行全血细胞计数及使用 Leishmann 染色进行外周血涂片)和 CTP 分级。使用线性逻辑回归模型,根据 HP 和 CTP 分级来预测 OV。
共纳入 54 例肝硬化患者[CTP 分级 A、B 和 C 分别为 14 例(26%)、24 例(44%)和 16 例(30%)]。37 例患者在 UGIE 上发现有静脉曲张[CTP-A 4/14(26.6%),CTP-B 19/24(79.2%),CTP-C 14/16(87.5%)]。广义线性模型拟合显示,小血小板百分比(%SP)(P=0.002)、CTP-B(P=0.003)和 CTP-C(P=0.003)逐渐降低,与 CTP-A 相比,它们发生 OV 的可能性更高。该模型预测存在 OV 的对数优势比(log odds)为-0.189-(0.046*%SP)+2.9[如果是 CTP-B] +3.7[如果是 CTP-C]。基于接收者操作特征(ROC)分析,选择模型值>-0.19 作为预测 OV 的截断点,其具有 89%的敏感性、76%的特异性、89%的阳性预测值和 76%的阴性预测值。
我们使用外周血涂片上的%SP 和 CTP 分级构建了一个模型。该模型可用于预测新诊断的肝硬化患者中 OV 的存在,具有可接受的敏感性和特异性,以便在资源有限的情况下优先对那些需要早期 UGIE 的患者进行评估。