Suppr超能文献

一项日本心房颤动患者多中心门诊注册研究的聚类分析。

A Cluster Analysis of the Japanese Multicenter Outpatient Registry of Patients With Atrial Fibrillation.

机构信息

Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina.

Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina.

出版信息

Am J Cardiol. 2019 Sep 15;124(6):871-878. doi: 10.1016/j.amjcard.2019.05.071. Epub 2019 Jun 25.

Abstract

Recently, cluster analysis was used to identify unique clinically relevant phenotypes of atrial fibrillation (AF) in a cohort from the United States (US) and classified clusters according to the presence of comorbid behavioral disorders, those with conduction disorders, or atherosclerotic comorbidities. Whether these phenotypes are consistent in AF cohorts outside the US remains unknown. Thus, we sought to conduct a cluster analysis in a cohort of Japanese AF patients. We conducted a cluster analysis of phenotypic data (46 variables) in an AF patient cohort recruited from 11 Japanese sites participating in the KiCS-AF Registry. Overall, 2,458 AF patients (median [IQR] age, 68.0 [60.0 to 76.0]; 30.3% female; median [IQR] CHADS-Vasc, 2 [1, 3]) were analyzed. Similar to the US cohort, atherosclerotic comorbidities were identified as distinguishing factors to characterize clusters. Distribution of AF type and left atrial (LA) size substantially varied and was the key feature for cluster formation. CHADS-Vasc score also contributed to cluster formation, although behavioral disorders and/or conduction disorders did not readily characterize clusters. Subsequently, the cohort was classified into 3 clusters: (1) Younger paroxysmal AF (n = 1,190); (2) Persistent/permanent AF with LA enlargement (n = 1,143); and (3) Atherosclerotic comorbid AF in elderly patients (N = 125). In conclusion, conventional classifications, such as atherosclerotic risk factors and CHADS-Vasc score contributed to cluster formation in mutually, whereas in nonatherosclerotic clusters, AF type or LA size rather than the presence or absence of behavior risk factors or sinus node dysfunction (tachy-brady syndrome) seemed to contribute to cluster formation in the Japanese cohort.

摘要

最近,聚类分析被用于识别来自美国(US)队列中独特的与临床相关的心房颤动(AF)表型,并根据合并的行为障碍、传导障碍或动脉粥样硬化合并症的存在对聚类进行分类。这些表型在美国以外的 AF 队列中是否一致尚不清楚。因此,我们试图在日本 AF 患者队列中进行聚类分析。我们对来自参与 KiCS-AF 注册研究的 11 个日本站点的 AF 患者队列进行了表型数据(46 个变量)的聚类分析。共有 2458 例 AF 患者(中位数[IQR]年龄,68.0[60.0 至 76.0];30.3%为女性;中位数[IQR]CHADS-Vasc,2[1,3])被纳入分析。与美国队列相似,动脉粥样硬化合并症被确定为区分特征,以描述聚类。AF 类型和左心房(LA)大小的分布差异很大,是聚类形成的关键特征。CHADS-Vasc 评分也有助于聚类形成,尽管行为障碍和/或传导障碍不易对聚类进行特征描述。随后,该队列被分为 3 个聚类:(1)年轻阵发性 AF(n=1190);(2)LA 增大的持续性/永久性 AF(n=1143);(3)老年患者的动脉粥样硬化合并 AF(n=125)。总之,传统的分类方法,如动脉粥样硬化危险因素和 CHADS-Vasc 评分,相互作用有助于聚类形成,而在非动脉粥样硬化聚类中,AF 类型或 LA 大小而不是行为危险因素或窦房结功能障碍(快-慢综合征)的存在与否似乎有助于聚类形成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验