Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina.
Section Editor.
JAMA Cardiol. 2018 Jan 1;3(1):54-63. doi: 10.1001/jamacardio.2017.4665.
Atrial fibrillation (AF) is usually classified on the basis of the disease subtype. However, this characterization does not capture the full heterogeneity of AF, and a data-driven cluster analysis reveals different possible classifications of patients.
To characterize patients with AF based on a cluster analysis and to evaluate the association between these phenotypes, treatment, and clinical outcomes.
DESIGN, SETTING, AND PARTICIPANTS: This cluster analysis used data from an observational cohort that included 9749 patients with AF who had been admitted to 174 US sites participating in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) registry. Data analysis was completed from January 2017 to October 2017.
Patients with diagnosed AF who were included in the registry.
Composite of major adverse cardiovascular or neurological events and major bleeding, as defined by the International Society of Thrombosis and Hemostasis criteria.
Of 9749 total patients, 4150 (42.6%) were female; 8719 (89.4%) were white and 477 (4.9%) were African American. A cluster analysis was performed using 60 baseline clinical characteristics, and it classified patients with AF into 4 statistically driven clusters: (1) those with considerably lower rates of risk factors and comorbidities than all other clusters (n = 4673); (2) those with AF at younger ages and/or with comorbid behavioral disorders (n = 963); (3) those with AF who had similarities to patients with tachycardia-brachycardia and had device implantation owing to sinus node dysfunction (n = 1651); and (4) those with AF and prior coronary artery disease, myocardial infarction, and/or atherosclerotic comorbidities (n = 2462). Conventional classifications, such as AF subtype and left atrial size, did not drive cluster formation. Compared with the low comorbidity AF cluster, adjusted risks of major adverse cardiovascular or neurological events were significantly higher in the other 3 clusters (behavioral comorbidity cluster: hazard ratio [HR], 1.49; 95% CI, 1.10-2.00; device implantation cluster: HR, 1.39; 95% CI, 1.15-1.68; and atherosclerotic comorbidity cluster: HR, 1.59; 95% CI, 1.31-1.92). For major bleeding, adjusted risks were higher in the behavioral disorder comorbidity cluster (HR, 1.35; 95% CI, 1.05-1.73), those with device implantation (HR, 1.24; 95% CI, 1.05-1.47), and those with atherosclerotic comorbidities (HR, 1.13; 95% CI, 0.96-1.33) compared with the low comorbidity cluster. The same clusters were identified in an external validation in the ORBIT AF II registry.
Cluster analysis identified 4 clinically relevant phenotypes of AF that each have distinct associations with clinical outcomes, underscoring the heterogeneity of AF and importance of comorbidities and substrates.
心房颤动 (AF) 通常基于疾病亚型进行分类。然而,这种特征并不能捕捉到 AF 的全部异质性,数据驱动的聚类分析揭示了患者的不同可能分类。
基于聚类分析对 AF 患者进行特征描述,并评估这些表型与治疗和临床结局之间的关系。
设计、设置和参与者:这项聚类分析使用了来自一项观察性队列的数据,该队列包括了 9749 名在美国 174 个参与 Outcomes Registry for Better Informed Treatment of Atrial Fibrillation(ORBIT-AF)登记处的美国站点住院的 AF 患者。数据分析于 2017 年 1 月至 2017 年 10 月完成。
在登记处中诊断为 AF 的患者。
根据国际血栓和止血学会的标准,定义为主要不良心血管或神经事件和主要出血的复合结局。
在 9749 名患者中,4150 名(42.6%)为女性;8719 名(89.4%)为白人,477 名(4.9%)为非裔美国人。对 60 项基线临床特征进行聚类分析,将 AF 患者分为 4 个统计学驱动的聚类:(1)与所有其他聚类相比,风险因素和合并症发生率明显较低的患者(n = 4673);(2)年龄较小或合并行为障碍的 AF 患者(n = 963);(3)与心动过速-心动过缓患者相似且因窦房结功能障碍而植入设备的 AF 患者(n = 1651);(4)合并 AF 及既往冠状动脉疾病、心肌梗死和/或动脉粥样硬化合并症的患者(n = 2462)。传统分类,如 AF 亚型和左心房大小,并没有驱动聚类的形成。与低合并症 AF 聚类相比,其他 3 个聚类的主要不良心血管或神经事件调整风险显著更高(行为合并症聚类:危险比 [HR],1.49;95%置信区间 [CI],1.10-2.00;设备植入聚类:HR,1.39;95%CI,1.15-1.68;和动脉粥样硬化合并症聚类:HR,1.59;95%CI,1.31-1.92)。对于主要出血,行为障碍合并症聚类(HR,1.35;95%CI,1.05-1.73)、设备植入聚类(HR,1.24;95%CI,1.05-1.47)和动脉粥样硬化合并症聚类(HR,1.13;95%CI,0.96-1.33)的调整风险均高于低合并症聚类。在 ORBIT AF II 登记处的外部验证中也确定了相同的聚类。
聚类分析确定了 4 种具有临床意义的 AF 表型,每种表型与临床结局都有明显的关联,突出了 AF 的异质性以及合并症和基质的重要性。