Cariño J A, Delgado-Prieto M, Zurita D, Picot A, Ortega J A, Romero-Troncoso R J
MCIA Research Center, Technical University of Catalonia, Terrassa, Spain.
MCIA Research Center, Technical University of Catalonia, Terrassa, Spain.
ISA Trans. 2020 Feb;97:76-85. doi: 10.1016/j.isatra.2019.07.025. Epub 2019 Jul 22.
Classical methods for monitoring electromechanical systems lack two critical functions for effective industrial application: management of unexpected events and the incorporation of new patterns into the knowledge database. This study presents a novel, high-performance condition-monitoring method based on a four-stage incremental learning approach. First, non-stationary operation is characterised using normalised time-frequency maps. Second, operating novelties are detected using multivariate kernel density estimators. Third, the operating novelties are characterised and labelled to increase the knowledge available for subsequent diagnosis. Fourth, operating faults are diagnosed and classified using neural networks. The proposed method is validated experimentally with an industrial camshaft-based machine under a variety of operating conditions.
意外事件管理以及将新模式纳入知识库。本研究提出了一种基于四阶段增量学习方法的新型高性能状态监测方法。首先,使用归一化时频图对非平稳运行进行特征描述。其次,使用多元核密度估计器检测运行中的新奇情况。第三,对运行中的新奇情况进行特征描述和标记,以增加可用于后续诊断的知识。第四,使用神经网络对运行故障进行诊断和分类。所提出的方法在各种运行条件下通过基于工业凸轮轴的机器进行了实验验证。