Arellano-Espitia Francisco, Delgado-Prieto Miguel, Martinez-Viol Victor, Saucedo-Dorantes Juan Jose, Osornio-Rios Roque Alfredo
MCIA Department of Electronic Engineering, Technical University of Catalonia (UPC), 08034 Barcelona, Spain.
HSPdigital CA-Mecatronica Engineering Faculty, Autonomous University of Queretaro, San Juan del Rio 76806, Mexico.
Sensors (Basel). 2020 Jul 16;20(14):3949. doi: 10.3390/s20143949.
Fault diagnosis in manufacturing systems represents one of the most critical challenges dealing with condition-based monitoring in the recent era of smart manufacturing. In the current Industry 4.0 framework, maintenance strategies based on traditional data-driven fault diagnosis schemes require enhanced capabilities to be applied over modern production systems. In fact, the integration of multiple mechanical components, the consideration of multiple operating conditions, and the appearance of combined fault patterns due to eventual multi-fault scenarios lead to complex electromechanical systems requiring advanced monitoring strategies. In this regard, data fusion schemes supported with advanced deep learning technology represent a promising approach towards a big data paradigm using cloud-based software services. However, the deep learning models' structure and hyper-parameters selection represent the main limitation when applied. Thus, in this paper, a novel deep-learning-based methodology for fault diagnosis in electromechanical systems is presented. The main benefits of the proposed methodology are the easiness of application and high adaptability to available data. The methodology is supported by an unsupervised stacked auto-encoders and a supervised discriminant analysis.
制造系统中的故障诊断是智能制造时代基于状态监测所面临的最关键挑战之一。在当前的工业4.0框架下,基于传统数据驱动故障诊断方案的维护策略需要增强能力才能应用于现代生产系统。事实上,多个机械部件的集成、多种运行条件的考虑以及最终多故障场景导致的组合故障模式的出现,使得复杂的机电系统需要先进的监测策略。在这方面,由先进深度学习技术支持的数据融合方案代表了一种使用基于云的软件服务实现大数据范式的有前景的方法。然而,深度学习模型的结构和超参数选择是应用时的主要限制。因此,本文提出了一种用于机电系统故障诊断的基于深度学习的新方法。该方法的主要优点是应用简便且对可用数据具有高度适应性。该方法由无监督堆叠自动编码器和有监督判别分析支持。