Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast BT97BL, United Kingdom; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21561 Alexandria, Egypt.
Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada.
J Biol Chem. 2019 Sep 6;294(36):13248-13268. doi: 10.1074/jbc.RA119.009671. Epub 2019 Jul 26.
The genus encompasses many Gram-negative bacteria living in the rhizosphere. Some species can cause life-threatening human infections, highlighting the need for clinical interventions targeting specific lipopolysaccharide proteins. -linked protein glycosylation has been reported, but the chemical structure of the -glycan and the machinery required for its biosynthesis are unknown and could reveal potential therapeutic targets. Here, using bioinformatics approaches, gene-knockout mutants, purified recombinant proteins, LC-MS-based analyses of -glycans, and NMR-based structural analyses, we identified a -glycosylation () gene cluster necessary for synthesis, assembly, and membrane translocation of a lipid-linked -glycan, as well as its structure, which consists of a β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc trisaccharide. We demonstrate that the cluster is conserved in the genus, and we confirm the production of glycoproteins with similar glycans in the species: , , and Furthermore, we show that absence of protein glycosylation severely affects bacterial fitness and accelerates bacterial clearance in a larva infection model. Finally, our experiments revealed that patients infected with , , , or develop glycan-specific antibodies. Together, these results highlight the importance of general protein glycosylation in the biology of the genus and its potential as a target for inhibition or immunotherapy approaches to control infections.
该属包含许多生活在根际的革兰氏阴性细菌。一些物种可导致危及生命的人类感染,这凸显了针对特定脂多糖蛋白进行临床干预的必要性。已经报道了与 - 链接蛋白糖基化有关的内容,但 - 聚糖的化学结构及其生物合成所需的机制尚不清楚,这可能揭示出潜在的治疗靶点。在这里,我们使用生物信息学方法、基因敲除突变体、纯化的重组蛋白、基于 LC-MS 的 - 聚糖分析和基于 NMR 的结构分析,鉴定了一个对于合成、组装和膜易位脂质连接的 - 聚糖以及其结构(由β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc 三糖组成)所必需的 - 糖基化()基因簇。我们证明了 属中存在 基因簇,并且我们在 种中确认了具有类似聚糖的糖蛋白的产生: 、 、 。此外,我们表明蛋白质糖基化的缺失严重影响细菌适应性并加速幼虫感染模型中的细菌清除。最后,我们的实验表明,感染 、 、 或 的患者会产生针对特定聚糖的抗体。总之,这些结果强调了一般蛋白糖基化在 属生物学中的重要性及其作为抑制或免疫治疗方法的潜在靶点,以控制 感染。