Suppr超能文献

基于德国人群队列的 2 型糖尿病患者 UKPDS 结局模型 2 预测死亡和心血管事件的性能。

Performance of the UKPDS Outcomes Model 2 for Predicting Death and Cardiovascular Events in Patients with Type 2 Diabetes Mellitus from a German Population-Based Cohort.

机构信息

Institute of Health Economics and Health Care Management, Helmholtz Zentrum München (GmbH), Neuherberg, Germany.

German Center for Diabetes Research, DZD, Neuherberg-Munich, Germany.

出版信息

Pharmacoeconomics. 2019 Dec;37(12):1485-1494. doi: 10.1007/s40273-019-00822-4.

Abstract

BACKGROUND AND OBJECTIVE

Accurate prediction of relevant outcomes is important for targeting therapies and to support health economic evaluations of healthcare interventions in patients with diabetes. The United Kingdom Prospective Diabetes Study (UKPDS) risk equations are some of the most frequently used risk equations. This study aims to analyze the calibration and discrimination of the updated UKPDS risk equations as implemented in the UKPDS Outcomes Model 2 (UKPDS-OM2) for predicting cardiovascular (CV) events and death in patients with type 2 diabetes mellitus (T2DM) from population-based German samples.

METHODS

Analyses are based on data of 456 individuals diagnosed with T2DM who participated in two population-based studies in southern Germany (KORA (Cooperative Health Research in the Region of Augsburg)-A: 1997/1998, n = 178; KORA-S4: 1999-2001, n = 278). We compared the participants' 10-year observed incidence of mortality, CV mortality, myocardial infarction (MI), and stroke with the predicted event rate of the UKPDS-OM2. The model's calibration was evaluated by Greenwood-Nam-D'Agostino tests and discrimination was evaluated by C-statistics.

RESULTS

Of the 456 participants with T2DM (mean age 65 years, mean diabetes duration 8 years, 56% male), over the 10-year follow-up time 129 died (61 due to CV events), 64 experienced an MI, and 46 a stroke. The UKPDS-OM2 significantly over-predicted mortality and CV mortality by 25% and 28%, respectively (Greenwood-Nam-D'Agostino tests: p < 0.01), but there was no significant difference between predicted and observed MI and stroke risk. The model poorly discriminated for death (C-statistic [95% confidence interval] = 0.64 [0.60-0.69]), CV death (0.64 [0.58-0.71]), and MI (0.58 [0.52-0.66]), and failed to discriminate for stroke (0.57 [0.47-0.66]).

CONCLUSIONS

The study results demonstrate acceptable calibration and poor discrimination of the UKPDS-OM2 for predicting death and CV events in this population-based German sample. Those limitations should be considered when using the UKPDS-OM2 for economic evaluations of healthcare strategies or using the risk equations for clinical decision-making.

摘要

背景与目的

准确预测相关结局对于针对疗法和支持医疗保健干预措施的健康经济评估非常重要。英国前瞻性糖尿病研究(UKPDS)风险方程是最常使用的风险方程之一。本研究旨在分析 UKPDS 风险方程的更新版本(UKPDS-OM2)在预测 2 型糖尿病患者心血管(CV)事件和死亡方面的校准和判别能力,这些方程是基于德国人群的基于人群的德国样本得出的。

方法

分析基于在德国南部参加两项基于人群的研究(KORA(奥格斯堡地区合作健康研究)-A:1997/1998 年,n=178;KORA-S4:1999-2001 年,n=278)的 456 名确诊为 2 型糖尿病的个体的数据。我们将参与者的 10 年死亡率、CV 死亡率、心肌梗死(MI)和中风的观察发生率与 UKPDS-OM2 的预测事件发生率进行了比较。通过 Greenwood-Nam-D'Agostino 检验评估模型的校准,通过 C 统计量评估判别能力。

结果

在 456 名患有 2 型糖尿病的参与者中(平均年龄 65 岁,平均糖尿病病程 8 年,56%为男性),在 10 年的随访期间,有 129 人死亡(61 人死于 CV 事件),64 人经历 MI,46 人经历中风。UKPDS-OM2 分别高估了死亡率和 CV 死亡率 25%和 28%(Greenwood-Nam-D'Agostino 检验:p<0.01),但 MI 和中风风险的预测与观察结果之间没有显著差异。该模型对死亡(C 统计量[95%置信区间]为 0.64 [0.60-0.69])、CV 死亡(0.64 [0.58-0.71])和 MI(0.58 [0.52-0.66])的判别能力较差,并且未能判别中风(0.57 [0.47-0.66])。

结论

该研究结果表明,在这个基于人群的德国样本中,UKPDS-OM2 对预测死亡和 CV 事件的校准结果可接受,但判别能力较差。在使用 UKPDS-OM2 进行医疗保健策略的健康经济评估或使用风险方程进行临床决策时,应考虑这些局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验