Suppr超能文献

使用质量调整生命年作为评估糖尿病模拟模型全球预测准确性的结果指标。

Using QALYs as an Outcome for Assessing Global Prediction Accuracy in Diabetes Simulation Models.

作者信息

Dakin Helen A, Gao Ni, Leal José, Holman Rury R, Tran-Duy An, Clarke Philip

机构信息

Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, UK.

Centre for Health Economics, University of York, York, UK.

出版信息

Med Decis Making. 2025 Jan;45(1):45-59. doi: 10.1177/0272989X241285866. Epub 2024 Oct 30.

Abstract

OBJECTIVES

(1) To demonstrate the use of quality-adjusted life-years (QALYs) as an outcome measure for comparing performance between simulation models and identifying the most accurate model for economic evaluation and health technology assessment. QALYs relate directly to decision making and combine mortality and diverse clinical events into a single measure using evidence-based weights that reflect population preferences. (2) To explore the usefulness of Q, the proportional reduction in error, as a model performance metric and compare it with other metrics: mean squared error (MSE), mean absolute error, bias (mean residual), and .

METHODS

We simulated all EXSCEL trial participants ( = 14,729) using the UK Prospective Diabetes Study Outcomes Model software versions 1 (UKPDS-OM1) and 2 (UKPDS-OM2). The EXSCEL trial compared once-weekly exenatide with placebo (median 3.2-y follow-up). Default UKPDS-OM2 utilities were used to estimate undiscounted QALYs over the trial period based on the observed events and survival. These were compared with the QALYs predicted by UKPDS-OM1/2 for the same period.

RESULTS

UKPDS-OM2 predicted patients' QALYs more accurately than UKPDS-OM1 did (MSE: 0.210 v. 0.253; Q: 0.822 v. 0.786). UKPDS-OM2 underestimated QALYs by an average of 0.127 versus 0.150 for UKPDS-OM1. UKPDS-OM2 predictions were more accurate for mortality, myocardial infarction, and stroke, whereas UKPDS-OM1 better predicted blindness and heart disease. Q facilitated comparisons between subgroups and (unlike ) was lower for biased predictors.

CONCLUSIONS

Q for QALYs was useful for comparing global prediction accuracy (across all clinical events) of diabetes models. It could be used for model registries, choosing between simulation models for economic evaluation and evaluating the impact of recalibration. Similar methods could be used in other disease areas.

HIGHLIGHTS

Diabetes simulation models are currently validated by examining their ability to predict the incidence of individual events (e.g., myocardial infarction, stroke, amputation) or composite events (e.g., first major adverse cardiovascular event).We introduce Q, the proportional reduction in error, as a measure that may be useful for evaluating and comparing the prediction accuracy of econometric or simulation models.We propose using the Q or mean squared error for QALYs as global measures of model prediction accuracy when comparing diabetes models' performance for health technology assessment; these can be used to select the most accurate simulation model for economic evaluation and to evaluate the impact of model recalibration in diabetes or other conditions.

摘要

目的

(1)证明使用质量调整生命年(QALYs)作为一种结果指标,用于比较模拟模型之间的性能,并确定用于经济评估和卫生技术评估的最准确模型。质量调整生命年直接与决策相关,它使用反映人群偏好的循证权重,将死亡率和各种临床事件合并为一个单一指标。(2)探讨误差比例减少量Q作为一种模型性能指标的有用性,并将其与其他指标进行比较:均方误差(MSE)、平均绝对误差、偏差(平均残差)以及[此处原文缺失一个指标]。

方法

我们使用英国前瞻性糖尿病研究结局模型软件版本1(UKPDS - OM1)和版本2(UKPDS - OM2)对所有EXSCEL试验参与者(n = 14729)进行模拟。EXSCEL试验比较了每周一次的艾塞那肽与安慰剂(中位随访3.2年)。基于观察到的事件和生存情况,使用UKPDS - OM2的默认效用值来估计试验期间未贴现的质量调整生命年。将这些结果与UKPDS - OM1/2同期预测的质量调整生命年进行比较。

结果

UKPDS - OM2比UKPDS - OM1更准确地预测了患者的质量调整生命年(均方误差:0.210对0.253;误差比例减少量Q:0.822对0.786)。UKPDS - OM2对质量调整生命年的低估平均为0.127,而UKPDS - OM1为0.150。UKPDS - OM2在死亡率、心肌梗死和中风方面的预测更准确,而UKPDS - OM1在失明和心脏病方面的预测更好。误差比例减少量Q便于亚组之间的比较,并且(与[此处原文缺失一个比较对象]不同)对于有偏差的预测器其值更低。

结论

质量调整生命年的误差比例减少量Q对于比较糖尿病模型的整体预测准确性(涵盖所有临床事件)很有用。它可用于模型登记处,在用于经济评估的模拟模型之间进行选择以及评估重新校准的影响。类似方法可用于其他疾病领域。

要点

目前糖尿病模拟模型通过检验其预测个体事件(如心肌梗死、中风、截肢)或复合事件(如首次重大不良心血管事件)发生率的能力来进行验证。我们引入误差比例减少量Q作为一种可能有助于评估和比较计量经济学或模拟模型预测准确性的指标。我们建议在比较糖尿病模型用于卫生技术评估的性能时,使用质量调整生命年的误差比例减少量Q或均方误差作为模型预测准确性的整体指标;这些指标可用于选择用于经济评估的最准确模拟模型,并评估糖尿病或其他病症中模型重新校准的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4279/11645849/47a353b18951/10.1177_0272989X241285866-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验