Suppr超能文献

开发和验证 CHIME 模拟模型,以评估中国人群中糖尿病前期和 2 型糖尿病的终生健康结局:一项建模研究。

Development and validation of the CHIME simulation model to assess lifetime health outcomes of prediabetes and type 2 diabetes in Chinese populations: A modeling study.

机构信息

School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Stanford University, Stanford, California, United States of America.

出版信息

PLoS Med. 2021 Jun 24;18(6):e1003692. doi: 10.1371/journal.pmed.1003692. eCollection 2021 Jun.

Abstract

BACKGROUND

Existing predictive outcomes models for type 2 diabetes developed and validated in historical European populations may not be applicable for East Asian populations due to differences in the epidemiology and complications. Despite the continuum of risk across the spectrum of risk factor values, existing models are typically limited to diabetes alone and ignore the progression from prediabetes to diabetes. The objective of this study is to develop and externally validate a patient-level simulation model for prediabetes and type 2 diabetes in the East Asian population for predicting lifetime health outcomes.

METHODS AND FINDINGS

We developed a health outcomes model from a population-based cohort of individuals with prediabetes or type 2 diabetes: Hong Kong Clinical Management System (CMS, 97,628 participants) from 2006 to 2017. The Chinese Hong Kong Integrated Modeling and Evaluation (CHIME) simulation model comprises of 13 risk equations to predict mortality, micro- and macrovascular complications, and development of diabetes. Risk equations were derived using parametric proportional hazard models. External validation of the CHIME model was assessed in the China Health and Retirement Longitudinal Study (CHARLS, 4,567 participants) from 2011 to 2018 for mortality, ischemic heart disease, cerebrovascular disease, renal failure, cataract, and development of diabetes; and against 80 observed endpoints from 9 published trials using 100,000 simulated individuals per trial. The CHIME model was compared to United Kingdom Prospective Diabetes Study Outcomes Model 2 (UKPDS-OM2) and Risk Equations for Complications Of type 2 Diabetes (RECODe) by assessing model discrimination (C-statistics), calibration slope/intercept, root mean square percentage error (RMSPE), and R2. CHIME risk equations had C-statistics for discrimination from 0.636 to 0.813 internally and 0.702 to 0.770 externally for diabetes participants. Calibration slopes between deciles of expected and observed risk in CMS ranged from 0.680 to 1.333 for mortality, myocardial infarction, ischemic heart disease, retinopathy, neuropathy, ulcer of the skin, cataract, renal failure, and heart failure; 0.591 for peripheral vascular disease; 1.599 for cerebrovascular disease; and 2.247 for amputation; and in CHARLS outcomes from 0.709 to 1.035. CHIME had better discrimination and calibration than UKPDS-OM2 in CMS (C-statistics 0.548 to 0.772, slopes 0.130 to 3.846) and CHARLS (C-statistics 0.514 to 0.750, slopes -0.589 to 11.411); and small improvements in discrimination and better calibration than RECODe in CMS (C-statistics 0.615 to 0.793, slopes 0.138 to 1.514). Predictive error was smaller for CHIME in CMS (RSMPE 3.53% versus 10.82% for UKPDS-OM2 and 11.16% for RECODe) and CHARLS (RSMPE 4.49% versus 14.80% for UKPDS-OM2). Calibration performance of CHIME was generally better for trials with Asian participants (RMSPE 0.48% to 3.66%) than for non-Asian trials (RMPSE 0.81% to 8.50%). Main limitations include the limited number of outcomes recorded in the CHARLS cohort, and the generalizability of simulated cohorts derived from trial participants.

CONCLUSIONS

Our study shows that the CHIME model is a new validated tool for predicting progression of diabetes and its outcomes, particularly among Chinese and East Asian populations that has been lacking thus far. The CHIME model can be used by health service planners and policy makers to develop population-level strategies, for example, setting HbA1c and lipid targets, to optimize health outcomes.

摘要

背景

由于流行病学和并发症的差异,为 2 型糖尿病开发和验证的现有预测结果模型可能不适用于东亚人群。尽管在整个风险因素值范围内存在风险连续性,但现有模型通常仅限于糖尿病本身,忽略了从糖尿病前期到糖尿病的进展。本研究的目的是开发和外部验证东亚人群中糖尿病前期和 2 型糖尿病的患者水平模拟模型,以预测终生健康结果。

方法和发现

我们从一个基于人群的糖尿病前期或 2 型糖尿病患者队列(2006 年至 2017 年的香港临床管理系统(CMS),97628 名参与者)中开发了一种健康结果模型。中国香港综合建模与评估(CHIME)模拟模型由 13 个风险方程组成,用于预测死亡率、微血管和大血管并发症以及糖尿病的发展。风险方程是使用参数比例风险模型推导出来的。CHIME 模型的外部验证是在 2011 年至 2018 年的中国健康与退休纵向研究(CHARLS)中进行的,用于死亡率、缺血性心脏病、脑血管疾病、肾衰竭、白内障和糖尿病的发展;并与使用 100,000 个模拟个体的 9 项已发表试验中的 80 个观察终点进行了比较。通过评估模型区分度(C 统计量)、校准斜率/截距、均方根百分比误差(RMSPE)和 R2,将 CHIME 模型与英国前瞻性糖尿病研究结果模型 2(UKPDS-OM2)和 2 型糖尿病并发症风险方程(RECODe)进行了比较。CHIME 风险方程在内部对糖尿病参与者的区分度为 0.636 至 0.813,外部为 0.702 至 0.770。CMS 中预期风险和观察风险的十位数之间的校准斜率范围为 0.680 至 1.333,用于死亡率、心肌梗死、缺血性心脏病、视网膜病变、神经病、皮肤溃疡、白内障、肾衰竭和心力衰竭;0.591 用于外周血管疾病;1.599 用于脑血管疾病;2.247 用于截肢;在 CHARLS 结果中为 0.709 至 1.035。CHIME 在 CMS(C 统计量为 0.548 至 0.772,斜率为 0.130 至 3.846)和 CHARLS(C 统计量为 0.514 至 0.750,斜率为-0.589 至 11.411)中的区分度和校准均优于 UKPDS-OM2,并且在 CMS 中的区分度和更好的校准优于 RECODe(C 统计量为 0.615 至 0.793,斜率为 0.138 至 1.514)。CHIME 在 CMS(RMSPE 为 3.53%,而 UKPDS-OM2 为 10.82%,RECODe 为 11.16%)和 CHARLS(RMSPE 为 4.49%,而 UKPDS-OM2 为 14.80%)中的预测误差较小。CHIME 的校准性能在亚洲参与者的试验中通常更好(RMSPE 为 0.48%至 3.66%),而在非亚洲试验中则较差(RMPSE 为 0.81%至 8.50%)。主要限制包括 CHARLS 队列中记录的结果数量有限,以及从试验参与者中得出的模拟队列的普遍性。

结论

我们的研究表明,CHIME 模型是一种新的经过验证的工具,可用于预测糖尿病及其结果的进展,特别是在目前还缺乏的中国和东亚人群中。CHIME 模型可被卫生服务规划者和政策制定者用于制定人口水平的策略,例如设定 HbA1c 和血脂目标,以优化健康结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ff/8270422/48c472d549f7/pmed.1003692.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验