Suppr超能文献

基于基层医疗中常规电子健康记录估算发病率:观察性研究。

Estimating Morbidity Rates Based on Routine Electronic Health Records in Primary Care: Observational Study.

作者信息

Nielen Mark M J, Spronk Inge, Davids Rodrigo, Korevaar Joke C, Poos René, Hoeymans Nancy, Opstelten Wim, van der Sande Marianne A B, Biermans Marion C J, Schellevis Francois G, Verheij Robert A

机构信息

Netherlands Institute for Health Services Research, Utrecht, Netherlands.

Centre for Health and Society, National Institute for Public Health and the Environment, Bilthoven, Netherlands.

出版信息

JMIR Med Inform. 2019 Jul 26;7(3):e11929. doi: 10.2196/11929.

Abstract

BACKGROUND

Routinely recorded electronic health records (EHRs) from general practitioners (GPs) are increasingly available and provide valuable data for estimating incidence and prevalence rates of diseases in the population. This paper describes how we developed an algorithm to construct episodes of illness based on EHR data to calculate morbidity rates.

OBJECTIVE

The goal of the research was to develop a simple and uniform algorithm to construct episodes of illness based on electronic health record data and develop a method to calculate morbidity rates based on these episodes of illness.

METHODS

The algorithm was developed in discussion rounds with two expert groups and tested with data from the Netherlands Institute for Health Services Research Primary Care Database, which consisted of a representative sample of 219 general practices covering a total population of 867,140 listed patients in 2012.

RESULTS

All 685 symptoms and diseases in the International Classification of Primary Care version 1 were categorized as acute symptoms and diseases, long-lasting reversible diseases, or chronic diseases. For the nonchronic diseases, a contact-free interval (the period in which it is likely that a patient will visit the GP again if a medical complaint persists) was defined. The constructed episode of illness starts with the date of diagnosis and ends at the time of the last encounter plus half of the duration of the contact-free interval. Chronic diseases were considered irreversible and for these diseases no contact-free interval was needed.

CONCLUSIONS

An algorithm was developed to construct episodes of illness based on routinely recorded EHR data to estimate morbidity rates. The algorithm constitutes a simple and uniform way of using EHR data and can easily be applied in other registries.

摘要

背景

来自全科医生(GP)的常规记录电子健康记录(EHR)越来越容易获取,并为估计人群中疾病的发病率和患病率提供了有价值的数据。本文描述了我们如何开发一种算法,以基于电子健康记录数据构建疾病发作,从而计算发病率。

目的

该研究的目标是开发一种简单且统一的算法,以基于电子健康记录数据构建疾病发作,并开发一种基于这些疾病发作来计算发病率的方法。

方法

该算法是在与两个专家小组的讨论中开发的,并使用了荷兰卫生服务研究初级保健数据库的数据进行测试,该数据库由219个全科诊所的代表性样本组成,涵盖了2012年登记的867,140名患者的总人口。

结果

《国际初级保健分类》第1版中的所有685种症状和疾病被分类为急性症状和疾病、长期可逆性疾病或慢性疾病。对于非慢性疾病,定义了一个无接触间隔(如果医疗投诉持续,患者可能再次就诊的时间段)。构建的疾病发作从诊断日期开始,到最后一次就诊时间加上无接触间隔持续时间的一半结束。慢性疾病被认为是不可逆的,对于这些疾病不需要无接触间隔。

结论

开发了一种算法,以基于常规记录的电子健康记录数据构建疾病发作,以估计发病率。该算法构成了一种使用电子健康记录数据的简单且统一的方式,并且可以很容易地应用于其他登记处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08c4/6688441/d516c7f51f8c/medinform_v7i3e11929_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验