Suppr超能文献

通过热图对 CatWalk 步态分析进行系统数据分析和数据挖掘,以神经退行性疾病的啮齿动物模型为例。

Systematic data analysis and data mining in CatWalk gait analysis by heat mapping exemplified in rodent models for neurodegenerative diseases.

机构信息

Machine Learning and Data Analytics Lab, Dept. of Computer Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany; Dept. of Electronics Engineering, Satya Wacana Christian University, Salatiga, Indonesia.

Dept. Experimental Therapy, University Hospital Erlangen (UKEr) and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany.

出版信息

J Neurosci Methods. 2019 Oct 1;326:108367. doi: 10.1016/j.jneumeth.2019.108367. Epub 2019 Jul 24.

Abstract

BACKGROUND

Motor impairment appears as a characteristic symptom of several diseases and injuries. Therefore, tests for analyzing motor dysfunction are widely applied across preclinical models and disease stages. Among those, gait analysis tests are commonly used, but they generate a huge number of gait parameters. Thus, complications in data analysis and reporting raise, which often leads to premature parameter selection.

NEW METHODS

In order to avoid arbitrary parameter selection, we present here a systematic initial data analysis by utilizing heat-maps for data reporting. We exemplified this approach within an intervention study, as well as applied it to two longitudinal studies in rodent models related to Parkinson's disease (PD) and Huntington disease (HD).

RESULTS

The systematic initial data analysis (IDA) is feasible for exploring gait parameters, both in experimental and longitudinal studies. The resulting heat maps provided a visualization of gait parameters within a single chart, highlighting important clusters of differences.

COMPARISON WITH EXISTING METHOD

Often, premature parameter selection is practiced, lacking comprehensiveness. Researchers often use multiple separated graphs on distinct gait parameters for reporting. Additionally, negative results are often not reported.

CONCLUSIONS

Heat mapping utilized in initial data analysis is advantageous for reporting clustered gait parameter differences in one single chart and improves data mining.

摘要

背景

运动障碍表现为几种疾病和损伤的特征性症状。因此,用于分析运动功能障碍的测试广泛应用于临床前模型和疾病阶段。其中,步态分析测试被广泛应用,但它们会产生大量的步态参数。因此,数据分析和报告的复杂性增加,这往往导致过早的参数选择。

新方法

为了避免任意参数选择,我们在此提出了一种系统的初始数据分析方法,即利用热图进行数据报告。我们在一项干预研究中举例说明了这种方法,并将其应用于两个与帕金森病 (PD) 和亨廷顿病 (HD) 相关的啮齿动物模型的纵向研究中。

结果

系统的初始数据分析 (IDA) 可用于探索实验和纵向研究中的步态参数。生成的热图在单个图表中提供了步态参数的可视化,突出了重要的差异集群。

与现有方法的比较

通常,过早的参数选择是实践中存在的问题,缺乏全面性。研究人员通常使用多个独立的图表来报告不同的步态参数。此外,通常不报告负面结果。

结论

初始数据分析中使用热图有利于在单个图表中报告聚类的步态参数差异,并提高数据挖掘能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验