Suppr超能文献

利用步态分析参数对帕金森病进行分类:一种数据挖掘方法。

Using gait analysis' parameters to classify Parkinsonism: A data mining approach.

机构信息

Department of Advanced Biomedical Sciences, University Hospital of Naples 'Federico II', Via S. Pansini, 5, Naples 80131, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Via bagni vecchi, 1, Telese Terme (BN), Italy.

Center for Neurodegenerative Diseases, Department of Medicine and Surgery, University of Salerno, Via San Leonardo, Salerno 84131, Italy; Istituto di Diagnosi e Cura Hermitage-Capodimonte, Naples, Italy.

出版信息

Comput Methods Programs Biomed. 2019 Oct;180:105033. doi: 10.1016/j.cmpb.2019.105033. Epub 2019 Aug 11.

Abstract

INTRODUCTION

Parkinson's disease (PD) is the second most common neurodegenerative disorder in the world, while Progressive Supranuclear Palsy (PSP) is an atypical Parkinsonism resembling PD, especially in early stage. Assumed that gait dysfunctions represent a major motor symptom for both pathologies, gait analysis can provide clinicians with subclinical information reflecting subtle differences between these diseases. In this scenario, data mining can be exploited in order to differentiate PD patients at different stages of the disease course and PSP using all the variables acquired through gait analysis.

METHODS

A cohort of 46 subjects (divided into three groups) affected by PD patients at different stages and PSP patients was acquired through gait analysis and spatial and temporal parameters were analysed. Synthetic Minority Over-sampling Technique was used to balance our imbalanced dataset and cross-validation was applied to provide different training and testing sets. Then, Random Forests and Gradient Boosted Trees were implemented.

RESULTS

Accuracy, error, precision, recall, specificity and sensitivity were computed for each group and for both algorithms, including 16 features. Random Forests obtained the highest accuracy (86.4%) but also specificity and sensitivity were particularly high, overcoming the 90% for PSP group.

CONCLUSION

The novelty of the study is the use of a data mining approach on the spatial and temporal parameters of gait analysis in order to classify patients affected by typical (PD) and atypical Parkinsonism (PSP) based on gait patterns. This application would be helpful for clinicians to distinguish PSP from PD at early stage, when the differential diagnosis is particularly challenging.

摘要

简介

帕金森病(PD)是世界上第二常见的神经退行性疾病,而进行性核上性麻痹(PSP)是一种类似于 PD 的非典型帕金森病,尤其是在早期。假设步态障碍是这两种疾病的主要运动症状,步态分析可以为临床医生提供反映这些疾病之间细微差异的亚临床信息。在这种情况下,可以利用数据挖掘来区分处于不同疾病阶段的 PD 患者和 PSP 患者,使用通过步态分析获得的所有变量。

方法

通过步态分析获得了一个由患有不同阶段 PD 和 PSP 的 46 名受试者组成的队列,并分析了空间和时间参数。采用合成少数过采样技术(Synthetic Minority Over-sampling Technique)平衡我们的不平衡数据集,并应用交叉验证来提供不同的训练集和测试集。然后,实现了随机森林(Random Forests)和梯度提升树(Gradient Boosted Trees)。

结果

对于每个组和两种算法(包括 16 个特征),都计算了准确性、误差、精度、召回率、特异性和敏感性。随机森林获得了最高的准确性(86.4%),但特异性和敏感性也特别高,超过了 PSP 组的 90%。

结论

本研究的新颖之处在于使用数据挖掘方法对步态分析的空间和时间参数进行分析,以便根据步态模式对患有典型帕金森病(PD)和非典型帕金森病(PSP)的患者进行分类。这种应用对于临床医生在早期阶段区分 PSP 和 PD 特别有帮助,因为在早期阶段,鉴别诊断特别具有挑战性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验