Suppr超能文献

深部脑刺激诱导的突触抑制的理论原理。

Theoretical principles of deep brain stimulation induced synaptic suppression.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Brain Stimul. 2019 Nov-Dec;12(6):1402-1409. doi: 10.1016/j.brs.2019.07.005. Epub 2019 Jul 10.

Abstract

BACKGROUND

Deep brain stimulation (DBS) is a successful clinical therapy for a wide range of neurological disorders; however, the physiological mechanisms of DBS remain unresolved. While many different hypotheses currently exist, our analyses suggest that high frequency (∼100 Hz) stimulation-induced synaptic suppression represents the most basic concept that can be directly reconciled with experimental recordings of spiking activity in neurons that are being driven by DBS inputs.

OBJECTIVE

The goal of this project was to develop a simple model system to characterize the excitatory post-synaptic currents (EPSCs) and action potential signaling generated in a neuron that is strongly connected to pre-synaptic glutamatergic inputs that are being directly activated by DBS.

METHODS

We used the Tsodyks-Markram (TM) phenomenological synapse model to represent depressing, facilitating, and pseudo-linear synapses driven by DBS over a wide range of stimulation frequencies. The EPSCs were then used as inputs to a leaky integrate-and-fire neuron model and we measured the DBS-triggered post-synaptic spiking activity.

RESULTS

Synaptic suppression was a robust feature of high frequency stimulation, independent of the synapse type. As such, the TM equations were used to define alternative DBS pulsing strategies that maximized synaptic suppression with the minimum number of stimuli.

CONCLUSIONS

Synaptic suppression provides a biophysical explanation to the intermittent, but still time-locked, post-synaptic firing characteristics commonly seen in DBS experimental recordings. Therefore, network models attempting to analyze or predict the effects of DBS on neural activity patterns should integrate synaptic suppression into their simulations.

摘要

背景

深部脑刺激(DBS)是一种成功的临床疗法,适用于广泛的神经疾病;然而,DBS 的生理机制仍未解决。虽然目前存在许多不同的假设,但我们的分析表明,高频(~100 Hz)刺激诱导的突触抑制代表了可以与 DBS 输入驱动的神经元中尖峰活动的实验记录直接协调的最基本概念。

目的

本项目的目标是开发一个简单的模型系统,以表征与直接由 DBS 激活的前谷氨酸能输入强连接的神经元中产生的兴奋性突触后电流(EPSC)和动作电位信号。

方法

我们使用 Tsodyks-Markram(TM)现象学突触模型来表示在广泛的刺激频率范围内由 DBS 驱动的压抑、促进和伪线性突触。然后,将 EPSC 用作漏电积分和放电神经元模型的输入,我们测量了 DBS 触发的突触后尖峰活动。

结果

突触抑制是高频刺激的一个强大特征,与突触类型无关。因此,TM 方程被用于定义替代 DBS 脉冲策略,这些策略以最小的刺激次数最大化突触抑制。

结论

突触抑制为 DBS 实验记录中常见的间歇性但仍时间锁定的突触后放电特征提供了一种生物物理解释。因此,试图分析或预测 DBS 对神经活动模式影响的网络模型应将突触抑制纳入其模拟中。

相似文献

1
Theoretical principles of deep brain stimulation induced synaptic suppression.
Brain Stimul. 2019 Nov-Dec;12(6):1402-1409. doi: 10.1016/j.brs.2019.07.005. Epub 2019 Jul 10.
2
Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.
J Neurophysiol. 2004 Apr;91(4):1457-69. doi: 10.1152/jn.00989.2003. Epub 2003 Dec 10.
3
Connectivity and Dynamics Underlying Synaptic Control of the Subthalamic Nucleus.
J Neurosci. 2019 Mar 27;39(13):2470-2481. doi: 10.1523/JNEUROSCI.1642-18.2019. Epub 2019 Jan 30.
4
Inferring stimulation induced short-term synaptic plasticity dynamics using novel dual optimization algorithm.
PLoS One. 2022 Sep 21;17(9):e0273699. doi: 10.1371/journal.pone.0273699. eCollection 2022.
6
Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting.
Clin Neurophysiol. 2016 Feb;127(2):1551-1559. doi: 10.1016/j.clinph.2015.07.034. Epub 2015 Aug 20.
7
Biophysical basis of subthalamic local field potentials recorded from deep brain stimulation electrodes.
J Neurophysiol. 2018 Oct 1;120(4):1932-1944. doi: 10.1152/jn.00067.2018. Epub 2018 Jul 18.
8
Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs.
J Neural Eng. 2018 Oct;15(5):056001. doi: 10.1088/1741-2552/aacbff. Epub 2018 Jun 12.
9
Synaptic reshaping of plastic neuronal networks by periodic multichannel stimulation with single-pulse and burst stimuli.
PLoS Comput Biol. 2022 Nov 3;18(11):e1010568. doi: 10.1371/journal.pcbi.1010568. eCollection 2022 Nov.
10
The pedunculopontine nucleus as an additional target for deep brain stimulation.
Neural Netw. 2011 Aug;24(6):617-30. doi: 10.1016/j.neunet.2011.03.007. Epub 2011 Mar 11.

引用本文的文献

1
The improved thalamo-cortical spiking network model of deep brain stimulation.
Front Comput Neurosci. 2025 Aug 13;19:1662598. doi: 10.3389/fncom.2025.1662598. eCollection 2025.
2
Biophysics of Frequency-Dependent Variation in Paresthesia and Pain Relief during Spinal Cord Stimulation.
J Neurosci. 2024 Jun 26;44(26):e2199232024. doi: 10.1523/JNEUROSCI.2199-23.2024.
3
Model-based closed-loop control of thalamic deep brain stimulation.
Front Netw Physiol. 2024 Apr 8;4:1356653. doi: 10.3389/fnetp.2024.1356653. eCollection 2024.
4
Advances in Deep Brain Stimulation: From Mechanisms to Applications.
J Neurosci. 2023 Nov 8;43(45):7575-7586. doi: 10.1523/JNEUROSCI.1427-23.2023.
6
Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions.
Brain. 2023 Nov 2;146(11):4456-4468. doi: 10.1093/brain/awad239.
7
Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity.
PLoS Comput Biol. 2023 Feb 1;19(2):e1010853. doi: 10.1371/journal.pcbi.1010853. eCollection 2023 Feb.
8
Evolving characterization of the human hyperdirect pathway.
Brain Struct Funct. 2023 Mar;228(2):353-365. doi: 10.1007/s00429-023-02610-5. Epub 2023 Jan 28.
9
Inferring stimulation induced short-term synaptic plasticity dynamics using novel dual optimization algorithm.
PLoS One. 2022 Sep 21;17(9):e0273699. doi: 10.1371/journal.pone.0273699. eCollection 2022.
10
Dynamic Oscillations Evoked by Subcallosal Cingulate Deep Brain Stimulation.
Front Neurosci. 2022 Feb 23;16:768355. doi: 10.3389/fnins.2022.768355. eCollection 2022.

本文引用的文献

1
Cortical Potentials Evoked by Subthalamic Stimulation Demonstrate a Short Latency Hyperdirect Pathway in Humans.
J Neurosci. 2018 Oct 24;38(43):9129-9141. doi: 10.1523/JNEUROSCI.1327-18.2018. Epub 2018 Sep 10.
3
Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation.
Brain Stimul. 2018 Sep-Oct;11(5):1140-1150. doi: 10.1016/j.brs.2018.05.008. Epub 2018 May 12.
4
How stimulation frequency and intensity impact on the long-lasting effects of coordinated reset stimulation.
PLoS Comput Biol. 2018 May 10;14(5):e1006113. doi: 10.1371/journal.pcbi.1006113. eCollection 2018 May.
5
Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation.
Neuroimage. 2018 May 15;172:263-277. doi: 10.1016/j.neuroimage.2018.01.015. Epub 2018 Jan 10.
7
Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice.
Neurobiol Dis. 2016 Nov;95:225-37. doi: 10.1016/j.nbd.2016.07.021. Epub 2016 Jul 21.
8
Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation.
J Neurochem. 2016 Oct;139 Suppl 1(Suppl 1):338-345. doi: 10.1111/jnc.13649. Epub 2016 Jun 8.
10
Determining synaptic parameters using high-frequency activation.
J Neurosci Methods. 2016 May 1;264:136-152. doi: 10.1016/j.jneumeth.2016.02.021. Epub 2016 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验