Suppr超能文献

量化亚蒂兰提斯深部脑刺激患者特定模型中的轴突反应。

Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Neuroimage. 2018 May 15;172:263-277. doi: 10.1016/j.neuroimage.2018.01.015. Epub 2018 Jan 10.

Abstract

Medical imaging has played a major role in defining the general anatomical targets for deep brain stimulation (DBS) therapies. However, specifics on the underlying brain circuitry that is directly modulated by DBS electric fields remain relatively undefined. Detailed biophysical modeling of DBS provides an approach to quantify the theoretical responses to stimulation at the cellular level, and has established a key role for axonal activation in the therapeutic mechanisms of DBS. Estimates of DBS-induced axonal activation can then be coupled with advances in defining the structural connectome of the human brain to provide insight into the modulated brain circuitry and possible correlations with clinical outcomes. These pathway-activation models (PAMs) represent powerful tools for DBS research, but the theoretical predictions are highly dependent upon the underlying assumptions of the particular modeling strategy used to create the PAM. In general, three types of PAMs are used to estimate activation: 1) field-cable (FC) models, 2) driving force (DF) models, and 3) volume of tissue activated (VTA) models. FC models represent the "gold standard" for analysis but at the cost of extreme technical demands and computational resources. Consequently, DF and VTA PAMs, derived from simplified FC models, are typically used in clinical research studies, but the relative accuracy of these implementations is unknown. Therefore, we performed a head-to-head comparison of the different PAMs, specifically evaluating DBS of three different axonal pathways in the subthalamic region. The DF PAM was markedly more accurate than the VTA PAMs, but none of these simplified models were able to match the results of the patient-specific FC PAM across all pathways and combinations of stimulus parameters. These results highlight the limitations of using simplified predictors to estimate axonal stimulation and emphasize the need for novel algorithms that are both biophysically realistic and computationally simple.

摘要

医学影像学在确定深部脑刺激(DBS)治疗的一般解剖靶点方面发挥了重要作用。然而,DBS 电场直接调制的潜在脑回路的具体细节仍然相对不清楚。DBS 的详细生物物理建模提供了一种方法来量化细胞水平刺激的理论反应,并确立了轴突激活在 DBS 治疗机制中的关键作用。然后,可以将 DBS 诱导的轴突激活估计与定义人类大脑结构连接组的进展相结合,以深入了解调制的脑回路,并可能与临床结果相关联。这些通路激活模型(PAMs)代表 DBS 研究的有力工具,但理论预测高度依赖于用于创建 PAM 的特定建模策略的基本假设。一般来说,有三种类型的 PAMs 用于估计激活:1)场电缆(FC)模型,2)驱动力(DF)模型和 3)激活组织体积(VTA)模型。FC 模型是分析的“黄金标准”,但代价是极高的技术要求和计算资源。因此,通常在临床研究中使用从简化的 FC 模型得出的 DF 和 VTA PAMs,但这些实现的相对准确性是未知的。因此,我们对头对头比较了不同的 PAMs,特别是评估了亚底核区域的三个不同轴突通路的 DBS。DF PAM 比 VTA PAMs 准确得多,但这些简化模型都无法在所有通路和刺激参数组合下匹配患者特异性 FC PAM 的结果。这些结果突出了使用简化预测器估计轴突刺激的局限性,并强调了需要新的算法,这些算法既具有生物物理真实性又具有计算简单性。

相似文献

1
Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation.
Neuroimage. 2018 May 15;172:263-277. doi: 10.1016/j.neuroimage.2018.01.015. Epub 2018 Jan 10.
2
A Driving-Force Predictor for Estimating Pathway Activation in Patient-Specific Models of Deep Brain Stimulation.
Neuromodulation. 2019 Jun;22(4):403-415. doi: 10.1111/ner.12929. Epub 2019 Feb 18.
4
StimVision v2: Examples and Applications in Subthalamic Deep Brain Stimulation for Parkinson's Disease.
Neuromodulation. 2021 Feb;24(2):248-258. doi: 10.1111/ner.13350. Epub 2021 Jan 3.
5
Model-Based Analysis of Pathway Recruitment During Subthalamic Deep Brain Stimulation.
Neuromodulation. 2024 Apr;27(3):455-463. doi: 10.1016/j.neurom.2023.02.084. Epub 2023 Apr 25.
6
Patient-specific analysis of the volume of tissue activated during deep brain stimulation.
Neuroimage. 2007 Jan 15;34(2):661-70. doi: 10.1016/j.neuroimage.2006.09.034. Epub 2006 Nov 17.
8
Deep brain stimulation of terminating axons.
Brain Stimul. 2020 Nov-Dec;13(6):1863-1870. doi: 10.1016/j.brs.2020.09.001. Epub 2020 Sep 9.
9
Subthalamic deep brain stimulation of an anatomically detailed model of the human hyperdirect pathway.
J Neurophysiol. 2022 May 1;127(5):1209-1220. doi: 10.1152/jn.00004.2022. Epub 2022 Mar 23.

引用本文的文献

1
Fabrication and Dose-Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode.
Micromachines (Basel). 2025 Aug 18;16(8):945. doi: 10.3390/mi16080945.
2
Evaluation of DBS computational modeling methodologies using in-vivo electrophysiology in Parkinson's disease.
medRxiv. 2025 May 6:2025.05.05.25326314. doi: 10.1101/2025.05.05.25326314.
3
Comparison of structural connectomes for modeling deep brain stimulation pathway activation.
Neuroimage. 2025 May 15;312:121211. doi: 10.1016/j.neuroimage.2025.121211. Epub 2025 Apr 11.
4
Neural pathway activation in the subthalamic region depends on stimulation polarity.
Brain Commun. 2025 Jan 21;7(1):fcaf006. doi: 10.1093/braincomms/fcaf006. eCollection 2025.
5
DBS in the restoration of motor functional recovery following spinal cord injury.
Front Neurol. 2024 Dec 4;15:1442281. doi: 10.3389/fneur.2024.1442281. eCollection 2024.
6
Computational Neurosurgery in Deep Brain Stimulation.
Adv Exp Med Biol. 2024;1462:435-451. doi: 10.1007/978-3-031-64892-2_26.
7
The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond.
Front Hum Neurosci. 2024 Sep 4;18:1439541. doi: 10.3389/fnhum.2024.1439541. eCollection 2024.
8
Population-level insights into temporal interference for focused deep brain neuromodulation.
Front Hum Neurosci. 2024 Apr 19;18:1308549. doi: 10.3389/fnhum.2024.1308549. eCollection 2024.
9
Investigation of the mechanism of action of deep brain stimulation for the treatment of Parkinson's disease.
Cogn Neurodyn. 2024 Apr;18(2):581-595. doi: 10.1007/s11571-023-10009-5. Epub 2023 Oct 9.
10
Modeling the volume of tissue activated in deep brain stimulation and its clinical influence: a review.
Front Hum Neurosci. 2024 Apr 10;18:1333183. doi: 10.3389/fnhum.2024.1333183. eCollection 2024.

本文引用的文献

1
Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease.
Neuroimage. 2017 Sep;158:332-345. doi: 10.1016/j.neuroimage.2017.07.012. Epub 2017 Jul 12.
2
StimVision Software: Examples and Applications in Subcallosal Cingulate Deep Brain Stimulation for Depression.
Neuromodulation. 2018 Feb;21(2):191-196. doi: 10.1111/ner.12625. Epub 2017 Jun 27.
3
Localization of Deep Brain Stimulation Contacts Using Corticospinal/Corticobulbar Tracts Stimulation.
Front Neurol. 2017 May 31;8:239. doi: 10.3389/fneur.2017.00239. eCollection 2017.
4
Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease.
Mov Disord. 2017 Aug;32(8):1174-1182. doi: 10.1002/mds.27042. Epub 2017 Jun 7.
5
Connectivity Predicts deep brain stimulation outcome in Parkinson disease.
Ann Neurol. 2017 Jul;82(1):67-78. doi: 10.1002/ana.24974.
8
Targeting of the Subthalamic Nucleus for Deep Brain Stimulation: A Survey Among Parkinson Disease Specialists.
World Neurosurg. 2017 Mar;99:41-46. doi: 10.1016/j.wneu.2016.11.012. Epub 2016 Nov 9.
9
Role of Soft-Tissue Heterogeneity in Computational Models of Deep Brain Stimulation.
Brain Stimul. 2017 Jan-Feb;10(1):46-50. doi: 10.1016/j.brs.2016.09.001. Epub 2016 Sep 8.
10
Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice.
Neurobiol Dis. 2016 Nov;95:225-37. doi: 10.1016/j.nbd.2016.07.021. Epub 2016 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验