Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA 02115, United States of America.
Renal Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Department of Medicine, Harvard Medical School, Boston, MA 02115, United States of America; Department of Pathology, Harvard Medical School, Boston, MA 02115, United States of America.
Blood Cells Mol Dis. 2019 Nov;79:102346. doi: 10.1016/j.bcmd.2019.102346. Epub 2019 Jul 17.
Excessive red cell dehydration contributes to the pathophysiology of sickle cell disease (SCD). The densest fraction of sickle red cells (with the highest corpuscular hemoglobin concentration) undergoes the most rapid polymerization of deoxy-hemoglobin S, leading to accelerated cell sickling and increased susceptibility to endothelial activation, red cell adhesion, and vaso-occlusion. Increasing red cell volume in order to decrease red cell density can thus serve as an adjunct therapeutic goal in SCD. Regulation of circulating mouse red cell volume and density is mediated largely by the Gardos channel, KCNN4, and the K-Cl cotransporters, KCC3 and KCC1. Whereas inhibition of the Gardos channel in subjects with sickle cell disease increased red cell volume, decreased red cell density, and improved other hematological indices in subjects with SCD, specific KCC inhibitors have not been available for testing. We therefore investigated the effect of genetic inactivation of KCC3 and KCC1 in the SAD mouse model of sickle red cell dehydration, finding decreased red cell density and improved hematological indices. We describe here generation of mice genetically deficient in the three major red cell volume regulatory gene products, KCNN4, KCC3, and KCC1 in C57BL6 non-sickle and SAD sickle backgrounds. We show that combined loss-of-function of all three gene products in SAD mice leads to incrementally increased MCV, decreased CHCM and % hyperchromic cells, decreased red cell density (phthalate method), increased resistance to hypo-osmotic lysis, and increased cell K content. The data show that combined genetic deletion of the Gardos channel and K-Cl cotransporters in a mouse SCD model decreases red cell density and improves several hematological parameters, supporting the strategy of combined pharmacological inhibition of these ion transport pathways in the adjunct treatment of human SCD.
过度的红细胞脱水导致镰状细胞病(SCD)的病理生理学改变。最密集的镰状红细胞部分(具有最高的胞血红蛋白浓度)经历脱氧血红蛋白 S 的最快聚合,导致细胞镰状化加速,并增加内皮细胞激活、红细胞黏附和血管阻塞的易感性。因此,增加红细胞体积以降低红细胞密度可以作为 SCD 的辅助治疗目标。循环小鼠红细胞体积和密度的调节主要由 Gardos 通道、KCNN4 和 K-Cl 共转运体 KCC3 和 KCC1 介导。虽然在镰状细胞病患者中抑制 Gardos 通道增加了红细胞体积、降低了红细胞密度,并改善了 SCD 患者的其他血液学指标,但尚未有特异性的 KCC 抑制剂可供测试。因此,我们研究了在 SAD 镰状红细胞脱水小鼠模型中敲除 KCC3 和 KCC1 对红细胞密度和血液学指标的影响,发现红细胞密度降低,血液学指标改善。我们在此描述了在 C57BL6 非镰状和 SAD 镰状背景下,对 KCNN4、KCC3 和 KCC1 这三种主要红细胞体积调节基因产物均缺失的小鼠的基因敲除。我们发现,在 SAD 小鼠中,这三种基因产物的联合功能丧失导致 MCV 逐渐增加,CHCM 和 %高色素细胞减少,红细胞密度降低(邻苯二甲酸法),对低渗溶解的抵抗力增加,以及细胞 K 含量增加。这些数据表明,在 SCD 小鼠模型中联合敲除 Gardos 通道和 K-Cl 共转运体可降低红细胞密度并改善多个血液学参数,支持联合抑制这些离子转运途径的药物策略在 SCD 患者的辅助治疗中的应用。