Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
Department of Medicine, Harvard Medical School, Boston, Massachusetts.
Am J Physiol Cell Physiol. 2022 Sep 1;323(3):C694-C705. doi: 10.1152/ajpcell.00240.2022. Epub 2022 Jul 18.
Red cell volume is a major determinant of HbS concentration in sickle cell disease. Cellular deoxy-HbS concentration determines the delay time, the interval between HbS deoxygenation and deoxy-HbS polymerization. Major membrane transporter protein determinants of sickle red cell volume include the SLC12/KCC K-Cl cotransporters KCC3/SLC12A6 and KCC1/SLC12A4, and the KCNN4/KCa3.1 Ca-activated K channel (Gardos channel). Among standard inhibitors of KCC-mediated K-Cl cotransport, only [(dihydroindenyl)oxy]acetic acid (DIOA) has been reported to lack inhibitory activity against the related bumetanide-sensitive erythroid Na-K-2Cl cotransporter NKCC1/SLC12A2. DIOA has been often used to inhibit K-Cl cotransport when studying the expression and regulation of other K transporters and K channels. We report here that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also abrogate activity of the KCNN4/KCa3.1 Gardos channel in human and mouse red cells and in human sickle red cells. DIOA inhibition of A23187-stimulated erythroid K uptake (Gardos channel activity) was chloride-independent and persisted in mouse red cells genetically devoid of the principal K-Cl cotransporters KCC3 and KCC1. DIOA also inhibited YODA1-stimulated, chloride-independent erythroid K uptake. In contrast, DIOA exhibited no inhibitory effect on K influx into A23187-treated red cells of mice. DIOA inhibition of human KCa3.1 was validated (IC 42 µM) by whole cell patch clamp in HEK-293 cells. RosettaLigand docking experiments identified a potential binding site for DIOA in the fenestration region of human KCa3.1. We conclude that DIOA at concentrations routinely used to inhibit K-Cl cotransport can also block the KCNN4/KCa3.1 Gardos channel in normal and sickle red cells.
红细胞体积是影响镰状细胞病中 HbS 浓度的主要决定因素。细胞脱氧-HbS 浓度决定了延迟时间,即 HbS 脱氧和脱氧-HbS 聚合之间的间隔。影响镰状红细胞体积的主要膜转运蛋白决定因素包括 SLC12/KCC K-Cl 共转运蛋白 KCC3/SLC12A6 和 KCC1/SLC12A4,以及 KCNN4/KCa3.1 Ca 激活的 K 通道(Gardos 通道)。在 KCC 介导的 K-Cl 共转运的标准抑制剂中,只有 [(二氢茚基)氧基]乙酸 (DIOA) 据报道缺乏对相关布美他尼敏感的红细胞 Na-K-2Cl 共转运蛋白 NKCC1/SLC12A2 的抑制活性。DIOA 常用于抑制 K-Cl 共转运,以研究其他 K 转运体和 K 通道的表达和调节。我们在这里报告,DIOA 在常规抑制 K-Cl 共转运的浓度下,也可以阻断人类和小鼠红细胞以及人类镰状红细胞中 KCNN4/KCa3.1 Gardos 通道的活性。DIOA 抑制 A23187 刺激的红细胞 K 摄取(Gardos 通道活性)与氯离子无关,并且在遗传上缺乏主要 K-Cl 共转运蛋白 KCC3 和 KCC1 的小鼠红细胞中仍然存在。DIOA 还抑制 YODA1 刺激的、氯离子非依赖性的红细胞 K 摄取。相比之下,DIOA 对 A23187 处理的小鼠红细胞中 K 流入没有抑制作用。DIOA 对人 KCa3.1 的抑制作用(IC 42 µM)通过在 HEK-293 细胞中的全细胞膜片钳技术得到了验证。RosettaLigand 对接实验确定了 DIOA 在人 KCa3.1 的窗孔区的潜在结合位点。我们得出结论,DIOA 在常规抑制 K-Cl 共转运的浓度下也可以阻断正常和镰状红细胞中的 KCNN4/KCa3.1 Gardos 通道。