Suppr超能文献

任意假结熵的高分子物理框架。

A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots.

机构信息

Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts.

Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.

出版信息

Biophys J. 2019 Aug 6;117(3):520-532. doi: 10.1016/j.bpj.2019.06.037. Epub 2019 Jul 10.

Abstract

The accurate prediction of RNA secondary structure from primary sequence has had enormous impact on research from the past 40 years. Although many algorithms are available to make these predictions, the inclusion of non-nested loops, termed pseudoknots, still poses challenges arising from two main factors: 1) no physical model exists to estimate the loop entropies of complex intramolecular pseudoknots, and 2) their NP-complete enumeration has impeded their study. Here, we address both challenges. First, we develop a polymer physics model that can address arbitrarily complex pseudoknots using only two parameters corresponding to concrete physical quantities-over an order of magnitude fewer than the sparsest state-of-the-art phenomenological methods. Second, by coupling this model to exhaustive enumeration of the set of possible structures, we compute the entire free energy landscape of secondary structures resulting from a primary RNA sequence. We demonstrate that for RNA structures of ∼80 nucleotides, with minimal heuristics, the complete enumeration of possible secondary structures can be accomplished quickly despite the NP-complete nature of the problem. We further show that despite our loop entropy model's parametric sparsity, it performs better than or on par with previously published methods in predicting both pseudoknotted and non-pseudoknotted structures on a benchmark data set of RNA structures of ≤80 nucleotides. We suggest ways in which the accuracy of the model can be further improved.

摘要

从过去 40 年的研究来看,准确预测 RNA 二级结构对研究具有巨大影响。虽然有许多算法可用于进行这些预测,但包括非嵌套环(称为假结)仍然存在两个主要因素带来的挑战:1)没有物理模型可以估计复杂的分子内假结的环熵,2)它们的 NP 完全枚举阻碍了它们的研究。在这里,我们解决了这两个挑战。首先,我们开发了一个聚合物物理模型,该模型仅使用两个对应具体物理量的参数即可处理任意复杂的假结——比最稀疏的最先进的唯象方法少一个数量级。其次,通过将该模型与可能结构集的穷举枚举相结合,我们计算出由原始 RNA 序列产生的二级结构的整个自由能景观。我们证明,对于约 80 个核苷酸的 RNA 结构,在最少启发式的情况下,尽管该问题具有 NP 完全性,但可以快速完成可能的二级结构的完全枚举。我们进一步表明,尽管我们的环熵模型参数稀疏,但它在预测≤80 个核苷酸的 RNA 结构基准数据集上的假结和非假结结构方面的性能优于或与先前发表的方法相当。我们提出了进一步提高模型准确性的方法。

相似文献

1
A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots.任意假结熵的高分子物理框架。
Biophys J. 2019 Aug 6;117(3):520-532. doi: 10.1016/j.bpj.2019.06.037. Epub 2019 Jul 10.
6
Thermodynamics of RNA structures by Wang-Landau sampling.Wang-Landau 抽样法研究 RNA 结构的热力学性质。
Bioinformatics. 2010 Jun 15;26(12):i278-86. doi: 10.1093/bioinformatics/btq218.
7
RNA pseudoknot prediction in energy-based models.基于能量模型的RNA假结预测
J Comput Biol. 2000;7(3-4):409-27. doi: 10.1089/106652700750050862.

引用本文的文献

本文引用的文献

1
Systematic Mapping of RNA-Chromatin Interactions In Vivo.体内 RNA-染色质相互作用的系统作图。
Curr Biol. 2017 Feb 20;27(4):602-609. doi: 10.1016/j.cub.2017.01.011. Epub 2017 Jan 26.
2
4
Pseudoknots in RNA folding landscapes.RNA折叠景观中的假结
Bioinformatics. 2016 Jan 15;32(2):187-94. doi: 10.1093/bioinformatics/btv572. Epub 2015 Oct 1.
7
Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.准确的 SHAPE 指导的 RNA 二级结构建模,包括假结。
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5498-503. doi: 10.1073/pnas.1219988110. Epub 2013 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验