Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
Division of Biological Sciences, UC San Diego, La Jolla, CA 92093, USA.
EBioMedicine. 2019 Aug;46:193-201. doi: 10.1016/j.ebiom.2019.07.041. Epub 2019 Jul 25.
Multidrug-resistant (MDR) Acinetobacter baumannii infections have high mortality rates and few treatment options. Synergistic drug combinations may improve clinical outcome and reduce further emergence of resistance in MDR pathogens. Here we show an unexpected potent synergy of two translation inhibitors against the pathogen: commonly prescribed macrolide antibiotic azithromycin (AZM), widely ignored as a treatment alternative for invasive Gram-negative pathogens, and minocycline, among the current standard-of-care agents used for A. baumannii.
Media-dependent activities of AZM and MIN were evaluated in minimum inhibitory concentration assays and kinetic killing curves, alone or in combination, both in standard bacteriologic media (cation-adjusted Mueller-Hinton Broth) and more physiologic tissue culture media (RPMI), with variations of bicarbonate as a physiologic buffer. Synergy was calculated by fractional inhibitory concentration index (FICI). Therapeutic benefit of combining AZM and MIN was tested in a murine model of A. baumannii pneumonia. AZM + MIN synergism was probed mechanistically by bacterial cytological profiling (BCP), a quantitative fluorescence microscopy technique that identifies disrupted bacterial cellular pathways on a single cell level, and real-time kinetic measurement of translation inhibition via quantitative luminescence. AZM + MIN synergism was further evaluated vs. other contemporary high priority MDR bacterial pathogens.
Although two translation inhibitors are not expected to synergize, each drug complemented kinetic deficiencies of the other, speeding the initiation and extending the duration of translation inhibition as verified by FICI, BCP and kinetic luminescence markers. In an MDR A. baumannii pneumonia model, AZM + MIN combination therapy decreased lung bacterial burden and enhanced survival rates. Synergy between AZM and MIN was also detected vs. MDR strains of Gram-negative Klebsiella pneumoniae and Pseudomonas aeruginosa, and the leading Gram-positive pathogen methicillin-resistant Staphylococcus aureus.
As both agents are FDA approved with excellent safety profiles, clinical investigation of AZM and MIN combination regimens may immediately be contemplated for optimal treatment of A. baumannii and other MDR bacterial infections in humans. FUND: National Institutes of Health U01 AI124326 (JP, GS, VN) and U54 HD090259 (GS, VN). IC was supported by the UCSD Research Training Program for Veterinarians T32 OD017863.
耐多药(MDR)鲍曼不动杆菌感染的死亡率很高,治疗选择很少。协同药物组合可能改善临床结果并减少 MDR 病原体进一步出现耐药性。在这里,我们展示了两种翻译抑制剂对病原体的意外强大协同作用:常用的大环内酯类抗生素阿奇霉素(AZM),作为侵袭性革兰氏阴性病原体治疗的替代方案,通常被忽视,以及米诺环素,作为目前用于鲍曼不动杆菌的标准治疗药物之一。
在最低抑菌浓度测定和动力学杀伤曲线中评估 AZM 和 MIN 在标准细菌学培养基(阳离子调整的 Mueller-Hinton 肉汤)和更生理性组织培养培养基(RPMI)中的单独或组合的介质依赖性活性,以及碳酸氢盐的变化作为生理性缓冲剂。通过分数抑制浓度指数(FICI)计算协同作用。在鲍曼不动杆菌肺炎的小鼠模型中测试 AZM 和 MIN 联合治疗的治疗益处。通过细菌细胞学分析(BCP)、一种定量荧光显微镜技术,在单细胞水平上鉴定细菌细胞途径的破坏,以及通过定量荧光实时测量翻译抑制的动力学,来探究 AZM+MIN 协同作用的机制。进一步评估了 AZM+MIN 与其他当代高优先级 MDR 细菌病原体的协同作用。
尽管两种翻译抑制剂预计不会协同作用,但每种药物都补充了另一种药物的动力学缺陷,通过 FICI、BCP 和动力学荧光标记物证实,加速了翻译抑制的启动并延长了其持续时间。在 MDR 鲍曼不动杆菌肺炎模型中,AZM+MIN 联合治疗降低了肺部细菌负荷并提高了存活率。AZM 和 MIN 之间也检测到协同作用,针对革兰氏阴性肺炎克雷伯菌和铜绿假单胞菌的 MDR 菌株,以及主要的革兰氏阳性病原体耐甲氧西林金黄色葡萄球菌。
由于两种药物均获得美国食品和药物管理局批准且具有良好的安全性,因此可以立即考虑将 AZM 和 MIN 联合方案用于人类治疗鲍曼不动杆菌和其他 MDR 细菌感染的最佳治疗。
美国国立卫生研究院 U01 AI124326(JP、GS、VN)和 U54 HD090259(GS、VN)。IC 得到了 UCSD 兽医研究培训计划 T32 OD017863 的支持。