Department of Psychology, Harvard University, Cambridge, Massachusetts.
Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts.
Depress Anxiety. 2019 Sep;36(9):790-800. doi: 10.1002/da.22942. Epub 2019 Jul 29.
Although several short-forms of the posttraumatic stress disorder (PTSD) Checklist (PCL) exist, all were developed using heuristic methods. This report presents the results of analyses designed to create an optimal short-form PCL for DSM-5 (PCL-5) using both machine learning and conventional scale development methods.
The short-form scales were developed using independent datasets collected by the Army Study to Assess Risk and Resilience among Service members. We began by using a training dataset (n = 8,917) to fit short-form scales with between 1 and 8 items using different statistical methods (exploratory factor analysis, stepwise logistic regression, and a new machine learning method to find an optimal integer-scored short-form scale) to predict dichotomous PTSD diagnoses determined using the full PCL-5. A smaller subset of best short-form scales was then evaluated in an independent validation sample (n = 11,728) to select one optimal short-form scale based on multiple operating characteristics (area under curve [AUC], calibration, sensitivity, specificity, net benefit).
Inspection of AUCs in the training sample and replication in the validation sample led to a focus on 4-item integer-scored short-form scales selected with stepwise regression. Brier scores in the validation sample showed that a number of these scales had comparable calibration (0.015-0.032) and AUC (0.984-0.994), but that one had consistently highest net benefit across a plausible range of decision thresholds.
The recommended 4-item integer-scored short-form PCL-5 generates diagnoses that closely parallel those of the full PCL-5, making it well-suited for screening.
尽管存在几种简短形式的创伤后应激障碍(PTSD)检查表(PCL),但所有这些检查表都是使用启发式方法开发的。本报告介绍了使用机器学习和传统量表开发方法为 DSM-5(PCL-5)创建最佳简短形式 PCL 的分析结果。
简短形式量表是使用军队研究中收集的独立数据集开发的,该研究旨在评估服务人员的风险和复原力。我们首先使用训练数据集(n=8917)使用不同的统计方法(探索性因素分析、逐步逻辑回归和一种新的机器学习方法来找到最佳整数评分简短形式量表)拟合 1 至 8 项的简短形式量表,以预测使用完整 PCL-5 确定的二分类 PTSD 诊断。然后,在一个独立的验证样本(n=11728)中评估最佳简短形式量表的一个较小子集,以根据多个操作特征(曲线下面积[AUC]、校准、灵敏度、特异性、净收益)选择一个最佳简短形式量表。
在训练样本中检查 AUC 并在验证样本中复制,导致关注使用逐步回归选择的 4 项整数评分简短形式量表。验证样本中的 Brier 分数表明,其中许多量表具有可比的校准(0.015-0.032)和 AUC(0.984-0.994),但一个量表在合理的决策阈值范围内始终具有最高的净收益。
推荐的 4 项整数评分简短形式 PCL-5 生成的诊断与完整 PCL-5 的诊断非常接近,非常适合进行筛查。