Suppr超能文献

结合图形和分析方法与分子模拟,准确分析标记大分子的时间分辨 FRET 测量。

Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately.

机构信息

Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany.

出版信息

J Phys Chem B. 2017 Sep 7;121(35):8211-8241. doi: 10.1021/acs.jpcb.7b03441. Epub 2017 Aug 28.

Abstract

Förster resonance energy transfer (FRET) measurements from a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the structure and dynamics of DA labeled macromolecules. Accurate descriptions of FRET measurements by molecular models are complicated because the fluorophores are usually coupled to the macromolecule via flexible long linkers allowing for diffusional exchange between multiple states with different fluorescence properties caused by distinct environmental quenching, dye mobilities, and variable DA distances. It is often assumed for the analysis of fluorescence intensity decays that DA distances and D quenching are uncorrelated (homogeneous quenching by FRET) and that the exchange between distinct fluorophore states is slow (quasistatic). This allows us to introduce the FRET-induced donor decay, ε(t), a function solely depending on the species fraction distribution of the rate constants of energy transfer by FRET, for a convenient joint analysis of fluorescence decays of FRET and reference samples by integrated graphical and analytical procedures. Additionally, we developed a simulation toolkit to model dye diffusion, fluorescence quenching by the protein surface, and FRET. A benchmark study with simulated fluorescence decays of 500 protein structures demonstrates that the quasistatic homogeneous model works very well and recovers for single conformations the average DA distances with an accuracy of < 2%. For more complex cases, where proteins adopt multiple conformations with significantly different dye environments (heterogeneous case), we introduce a general analysis framework and evaluate its power in resolving heterogeneities in DA distances. The developed fast simulation methods, relying on Brownian dynamics of a coarse-grained dye in its sterically accessible volume, allow us to incorporate structural information in the decay analysis for heterogeneous cases by relating dye states with protein conformations to pave the way for fluorescence and FRET-based dynamic structural biology. Finally, we present theories and simulations to assess the accuracy and precision of steady-state and time-resolved FRET measurements in resolving DA distances on the single-molecule and ensemble level and provide a rigorous framework for estimating approximation, systematic, and statistical errors.

摘要

供体(D)到受体(A)荧光团的Förster 共振能量转移(FRET)测量常用于体外和活细胞中,以揭示 DA 标记大分子的结构和动力学信息。由于荧光团通常通过柔性长接头与大分子偶联,允许不同荧光性质的多个状态之间发生扩散交换,从而导致不同的环境猝灭、染料迁移率和可变的 DA 距离,因此分子模型对 FRET 测量的准确描述变得复杂。在分析荧光强度衰减时,通常假设 DA 距离和 D 猝灭是不相关的(通过 FRET 发生均匀猝灭),并且不同荧光团状态之间的交换是缓慢的(准静态)。这使我们能够引入 FRET 诱导的供体衰减 ε(t),这是一个仅取决于 FRET 能量转移速率常数的物种分数分布的函数,以便通过集成图形和分析程序方便地对 FRET 和参考样品的荧光衰减进行联合分析。此外,我们开发了一个模拟工具包来模拟染料扩散、蛋白质表面的荧光猝灭和 FRET。使用 500 个蛋白质结构的模拟荧光衰减进行的基准研究表明,准静态均匀模型效果非常好,并且对于单个构象,可以以 <2%的精度恢复平均 DA 距离。对于更复杂的情况,其中蛋白质采用具有显著不同染料环境的多种构象(异质情况),我们引入了一个通用分析框架,并评估其在解析 DA 距离异质性方面的能力。所开发的快速模拟方法依赖于粗粒染料在其可及体积中的布朗动力学,允许我们通过将染料状态与蛋白质构象相关联,将结构信息纳入异质情况的衰减分析中,为基于荧光和 FRET 的动态结构生物学铺平道路。最后,我们提出了理论和模拟来评估稳态和时间分辨 FRET 测量在单分子和整体水平上解析 DA 距离的准确性和精密度,并提供了一个严格的框架来估计逼近、系统和统计误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a67b/5592652/53473356e30a/jp-2017-03441z_0015.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验