Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel.
Molecules. 2019 Jul 26;24(15):2715. doi: 10.3390/molecules24152715.
In this work, we aimed to improve the encapsulation efficiency of sepiapterin (SP), the natural precursor of the essential cofactor tetrahydrobiopterin (BH4) that displays mild water-solubility and a short biological half-life, within methoxy-poly(ethylene-glycol)-poly(epsilon-caprolactone)(mPEG-PCL) nanoparticles (NPs) by means of its complexation and hydrophobization with 2,3,6-triacetyl-β-cyclodextrin (TAβCD). For this, SP/TAβCD complexes were produced by spray-drying of SP/TAβCD binary solutions in ethanol using the Nano Spray Dryer B-90 HP. Dry powders were characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and transmission and scanning electron microscopy (TEM and SEM, respectively) and compared to the pristine components and their physical mixtures (PMs). Next, SP was encapsulated within mPEG-PCL NPs by nano-precipitation of an SP/TAβCD complex/mPEG-PCL solution. In addition to the nano-encapsulation of a preformed complex within the polymeric NPs, we assessed an alternative encapsulation approach called drying with copolymer (DWC) in which pristine SP, TAβCD, and mPEG-PCL were co-dissolved in a mixture of acetone and methanol at the desired weight ratio, dried under vacuum, re-dissolved, and nano-precipitated in water. The dissolution-drying step was aimed to promote the formation of molecular hydrophobic interactions between SP, TAβCD, and the PCL blocks in the copolymer. SP-loaded mPEG-PCL NPs were characterized by dynamic light scattering (DLS) and SEM. NPs with a size of 74-75 nm and standard deviation (S.D., a measure of the peak width) of 21-22 nm were obtained when an SP:TAβCD (1:1 molar ratio) spray-dried complex was used for the nano-encapsulation and SEM analysis revealed the absence of free SP crystals. The encapsulation efficiency () and drug loading () were 85% and 2.6%, respectively, as opposed to the much lower values (14% and 0.6%, respectively) achieved with pristine SP. Moreover, the NPs sustained the SP release with relatively low burst effect of 20%. Overall, our results confirmed that spray-drying of SP/TAβCD solutions at the appropriate molar ratio leads to the hydrophobization of the relatively hydrophilic SP molecule, enabling its encapsulation within mPEG-PCL NPs and paves the way for the use of this strategy in the development of novel drug delivery systems of this vital biological precursor.
在这项工作中,我们旨在通过与 2,3,6-三乙酰基-β-环糊精 (TAβCD) 络合和疏水化,提高甲氧基-聚(乙二醇)-聚(ε-己内酯)(mPEG-PCL)纳米粒(NPs)中蝶呤(SP)的包封效率,SP 是必需辅助因子四氢生物蝶呤(BH4)的天然前体,具有轻微的水溶性和较短的生物半衰期。对于这一点,通过在乙醇中喷雾干燥 SP/TAβCD 二元溶液,使用 Nano Spray Dryer B-90 HP 生产 SP/TAβCD 复合物。通过差示扫描量热法(DSC)、傅里叶变换红外光谱(FTIR)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对干燥粉末进行了表征,并与原始成分及其物理混合物(PM)进行了比较。接下来,通过 SP/TAβCD 复合物/mPEG-PCL 溶液的纳米沉淀将 SP 包封在 mPEG-PCL NPs 内。除了在聚合物 NPs 内预形成的复合物的纳米封装外,我们还评估了一种称为共聚物干燥(DWC)的替代封装方法,其中将原始 SP、TAβCD 和 mPEG-PCL 溶解在所需重量比的丙酮和甲醇混合物中,在真空中干燥,重新溶解,并在水中纳米沉淀。溶解-干燥步骤旨在促进 SP、TAβCD 和共聚物中 PCL 嵌段之间形成分子疏水相互作用。通过动态光散射(DLS)和 SEM 对载有 SP 的 mPEG-PCL NPs 进行了表征。当使用 SP:TAβCD(1:1 摩尔比)喷雾干燥复合物进行纳米封装时,得到了尺寸为 74-75nm 且标准偏差(S.D.,峰宽的度量)为 21-22nm 的 NPs,SEM 分析表明没有游离的 SP 晶体。包封效率(EE)和载药量(DL)分别为 85%和 2.6%,而原始 SP 分别仅为 14%和 0.6%。此外,这些 NPs 以相对较低的突释效应(20%)维持 SP 的释放。总体而言,我们的结果证实,以适当的摩尔比喷雾干燥 SP/TAβCD 溶液会导致相对亲水的 SP 分子的疏水化,从而能够将其封装在 mPEG-PCL NPs 内,并为该策略在开发这种重要生物前体的新型药物传递系统中的应用铺平道路。