文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

六臂共聚物聚己内酯-聚乙二醇的蛋白质递药纳米系统用于长效持续释放。

Protein delivery nanosystem of six-arm copolymer poly(ε-caprolactone)-poly(ethylene glycol) for long-term sustained release.

机构信息

Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.

Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

出版信息

Int J Nanomedicine. 2018 May 8;13:2743-2754. doi: 10.2147/IJN.S161006. eCollection 2018.


DOI:10.2147/IJN.S161006
PMID:29780245
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5951147/
Abstract

BACKGROUND: To address the issue of delivery of proteins, a six-arm copolymer, six-arm poly (ε-caprolactone)-poly(ethylene glycol) (6S-PCL-PEG), was synthesized by a simple two-step reaction. Thereafter, the application of 6S-PCL-PEG as a protein carrier was evaluated. MATERIALS AND METHODS: A six-arm copolymer, six-arm poly(ε-caprolactone) (6S-PCL), was synthesized by ring-opening polymerization, with stannous octoate as a catalyst and inositol as an initiator. Then, poly(ethylene glycol) (PEG) was linked with 6S-PCL by oxalyl chloride to obtain 6S-PCL-PEG. Hydrogen-1 nuclear magnetic resonance spectrum, Fourier-transform infrared spectroscopy, and gel-permeation chromatography were conducted to identify the structure of 6S-PCL-PEG. The biocompatibility of the 6S-PCL-PEG was evaluated by a cell counting kit-8 assay. Polymeric nanoparticles (NPs) were prepared by a water-in-oil-in-water double emulsion (W/O/W) solvent evaporation method. The size distribution and zeta potential of NPs were determined by dynamic light scattering. Transmission electron microscopy was used to observe the morphology of NPs. Drug-loading capacity, encapsulation efficiency, and the release behavior of ovalbumin (OVA)-loading NPs were tested by the bicinchoninic acid assay kit. The stability and activity of OVA released from NPs were detected and the uptake of NPs was evaluated by NIH-3T3 cells. RESULTS: All results indicated the successful synthesis of amphiphilic copolymer 6S-PCL-PEG, which possessed excellent biocompatibility and could formulate NPs easily. High drug-loading capacity and encapsulation efficiency of protein NPs were observed. In vitro, OVA was released slowly and the bioactivity of OVA was maintained for over 28 days. CONCLUSION: 6S-PCL-PEG NPs prepared in this study show promising potential for use as a protein carrier.

摘要

背景:为了解决蛋白质的递送问题,通过简单的两步反应合成了一种六臂共聚物,六臂聚(ε-己内酯)-聚(乙二醇)(6S-PCL-PEG)。此后,评估了 6S-PCL-PEG 作为蛋白质载体的应用。

材料与方法:通过开环聚合,以辛酸亚锡为催化剂,肌醇为引发剂,合成了六臂共聚物六臂聚(ε-己内酯)(6S-PCL)。然后,用草酰氯将聚乙二醇(PEG)与 6S-PCL 连接,得到 6S-PCL-PEG。通过氢-1 核磁共振谱、傅里叶变换红外光谱和凝胶渗透色谱对 6S-PCL-PEG 的结构进行了鉴定。通过细胞计数试剂盒-8 测定法评估了 6S-PCL-PEG 的生物相容性。通过水包油包水(W/O/W)双乳液溶剂蒸发法制备了聚合物纳米颗粒(NPs)。通过动态光散射法测定 NPs 的粒径分布和 Zeta 电位。透射电子显微镜观察 NPs 的形态。通过双缩脲法测定卵清蛋白(OVA)载药 NPs 的载药量、包封率和释放行为。通过 NIH-3T3 细胞检测 NPs 释放的 OVA 的稳定性和活性以及 NPs 的摄取。

结果:所有结果均表明成功合成了两亲性共聚物 6S-PCL-PEG,该共聚物具有良好的生物相容性,易于制备 NPs。观察到蛋白质 NPs 具有较高的载药量和包封效率。体外,OVA 缓慢释放,OVA 的生物活性可维持 28 天以上。

结论:本研究制备的 6S-PCL-PEG NPs 具有作为蛋白质载体的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/3603e083d4d1/ijn-13-2743Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/e263c300d094/ijn-13-2743Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/c1d0c6f8bf97/ijn-13-2743Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/30e675244781/ijn-13-2743Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/b9e4c849e7c9/ijn-13-2743Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/edd19a4253c5/ijn-13-2743Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/3603e083d4d1/ijn-13-2743Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/e263c300d094/ijn-13-2743Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/c1d0c6f8bf97/ijn-13-2743Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/30e675244781/ijn-13-2743Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/b9e4c849e7c9/ijn-13-2743Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/edd19a4253c5/ijn-13-2743Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2386/5951147/3603e083d4d1/ijn-13-2743Fig6.jpg

相似文献

[1]
Protein delivery nanosystem of six-arm copolymer poly(ε-caprolactone)-poly(ethylene glycol) for long-term sustained release.

Int J Nanomedicine. 2018-5-8

[2]
Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma.

J Drug Target. 2008-7

[3]
Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles.

Int J Nanomedicine. 2012-7-27

[4]
Synthesis of three-arm block copolymer poly(lactic--glycolic acid)-poly(ethylene glycol) with oxalyl chloride and its application in hydrophobic drug delivery.

Int J Nanomedicine. 2016-11-15

[5]
Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties.

Biomacromolecules. 2010-5-10

[6]
Novel self-assembled amphiphilic poly(epsilon-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles.

J Mater Sci Mater Med. 2009-3

[7]
Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.

Int J Nanomedicine. 2017-5-8

[8]
Enhanced Nanoencapsulation of Sepiapterin within PEG-PCL Nanoparticles by Complexation with Triacetyl-Beta Cyclodextrin.

Molecules. 2019-7-26

[9]
Design and Development of D‒α‒Tocopheryl Polyethylene Glycol Succinate‒‒Poly(ε-Caprolactone) (TPGS--PCL) Nanocarriers for Solubilization and Controlled Release of Paclitaxel.

Molecules. 2021-5-4

[10]
Poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery.

J Phys Chem B. 2009-10-1

引用本文的文献

[1]
Polyesters and Polyester Nano- and Microcarriers for Drug Delivery.

Polymers (Basel). 2024-9-3

[2]
Highly sensitive HO-scavenging nano-bionic system for precise treatment of atherosclerosis.

Acta Pharm Sin B. 2023-1

本文引用的文献

[1]
Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells.

Nanoscale. 2017-7-27

[2]
Synthesis of three-arm block copolymer poly(lactic--glycolic acid)-poly(ethylene glycol) with oxalyl chloride and its application in hydrophobic drug delivery.

Int J Nanomedicine. 2016-11-15

[3]
Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

Int J Nanomedicine. 2016-8-17

[4]
Controlled release of liraglutide using thermogelling polymers in treatment of diabetes.

Sci Rep. 2016-8-17

[5]
Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system.

Pharm Dev Technol. 2017-5

[6]
Composite Nanoformulation Therapeutics for Long-Term Ocular Delivery of Macromolecules.

Mol Pharm. 2016-9-6

[7]
Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery.

J Mater Sci Mater Med. 2016-1

[8]
Engineering Polymer Hydrogel Nanoparticles for Lymph Node-Targeted Delivery.

Angew Chem Int Ed Engl. 2015-12-15

[9]
pH-Responsive Poly(D,L-lactic-co-glycolic acid) Nanoparticles with Rapid Antigen Release Behavior Promote Immune Response.

ACS Nano. 2015-4-24

[10]
Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid).

Int J Nanomedicine. 2013-11-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索