State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
Int J Mol Sci. 2019 Jul 22;20(14):3572. doi: 10.3390/ijms20143572.
Human immunodeficiency virus type-1 and hepatitis C virus (HIV/HCV) coinfection occurs when a patient is simultaneously infected with both human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV), which is common today in certain populations. However, the treatment of coinfection is a challenge because of the special considerations needed to ensure hepatic safety and avoid drug-drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV coinfection. However, the identification of one molecule that acts on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining Naïve Bayes (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints, MACCS and extended connectivity fingerprints 6 (ECFP6), 60 classification models were constructed to predict compounds that were active against 11 HIV-1 targets and four HCV targets based on a multiple quantitative structure-activity relationships (multiple QSAR) method. Five-fold cross-validation and test set validation were performed to measure the performance of the 60 classification models. Our results show that the 60 multiple QSAR models appeared to have high classification accuracy in terms of the area under the ROC curve (AUC) values, which ranged from 0.83 to 1 with a mean value of 0.97 for the HIV-1 models and from 0.84 to 1 with a mean value of 0.96 for the HCV models. Furthermore, the 60 models were used to comprehensively predict the potential targets of an additional 46 compounds, including 27 approved HIV-1 drugs, 10 approved HCV drugs and nine selected compounds known to be active against one or more targets of HIV-1 or HCV. Finally, 20 hits, including seven approved HIV-1 drugs, four approved HCV drugs, and nine other compounds, were predicted to be HIV/HCV coinfection multitarget inhibitors. The reported bioactivity data confirmed that seven out of nine compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. The remaining predicted hits and chemical-protein interaction pairs with the potential ability to suppress HIV/HCV coinfection are worthy of further experimental investigation. This investigation shows that the multiple QSAR method is useful in predicting chemical-protein interactions for the discovery of multitarget inhibitors and provides a unique strategy for the treatment of HIV/HCV coinfection.
人类免疫缺陷病毒 1 型和丙型肝炎病毒(HIV/HCV)合并感染是指患者同时感染人类免疫缺陷病毒 1 型(HIV-1)和丙型肝炎病毒(HCV),这在某些人群中很常见。然而,由于需要特殊考虑来确保肝脏安全性并避免药物相互作用,因此合并感染的治疗是一个挑战。具有较少毒性的多靶抑制剂可能为 HIV/HCV 合并感染提供有前途的治疗策略。然而,通过实验评估鉴定一种同时作用于多个靶标的分子是昂贵且耗时的。基于计算机的靶标预测工具为开发多靶抑制剂提供了更多机会。在这项研究中,我们通过将朴素贝叶斯(NB)和支持向量机(SVM)算法与两种类型的分子指纹(MACCS 和扩展连接指纹 6(ECFP6)相结合,构建了 60 个分类模型,以根据多重定量构效关系(multiple QSAR)方法预测对 11 种 HIV-1 靶标和 4 种 HCV 靶标具有活性的化合物。我们进行了五重交叉验证和测试集验证,以衡量 60 个分类模型的性能。我们的结果表明,60 个多重 QSAR 模型在 HIV-1 模型的 AUC 值为 0.83 至 1,平均值为 0.97,在 HCV 模型的 AUC 值为 0.84 至 1,平均值为 0.96 方面,似乎具有较高的分类准确性。此外,我们使用 60 个模型综合预测了另外 46 种化合物的潜在靶标,其中包括 27 种已批准的 HIV-1 药物,10 种已批准的 HCV 药物和 9 种已知对一种或多种 HIV-1 或 HCV 靶标具有活性的选定化合物。最后,预测了 20 个命中物,包括 7 种已批准的 HIV-1 药物,4 种已批准的 HCV 药物和 9 种其他化合物,它们是 HIV/HCV 合并感染的多靶抑制剂。报告的生物活性数据证实,9 种化合物中有 7 种实际上同时与 HIV-1 和 HCV 靶标相互作用,具有不同的结合亲和力。其余预测的命中物和具有抑制 HIV/HCV 合并感染潜力的化学-蛋白质相互作用对值得进一步的实验研究。这项研究表明,多重 QSAR 方法可用于预测化学-蛋白质相互作用,以发现多靶抑制剂,并为 HIV/HCV 合并感染的治疗提供独特的策略。