Suppr超能文献

一种基于四次C Hermite改进经验模态分解算法的轨道故障诊断方法。

A Rail Fault Diagnosis Method Based on Quartic C Hermite Improved Empirical Mode Decomposition Algorithm.

作者信息

Liu Hanzhong, Qin Chaoxuan, Liu Ming

机构信息

School of Automation, Nanjing Institute of Technology, Nanjing 211167, China.

Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Sensors (Basel). 2019 Jul 26;19(15):3300. doi: 10.3390/s19153300.

Abstract

For compound fault detection of high-speed rail vibration signals, which presents a difficult problem, an early fault diagnosis method of an improved empirical mode decomposition (EMD) algorithm based on quartic C Hermite interpolation is presented. First, the quartic C Hermite interpolation improved EMD algorithm is used to decompose the original signal, and the intrinsic mode function (IMF) components are obtained. Second, singular value decomposition for the IMF components is performed to determine the principal components of the signal. Then, the signal is reconstructed and the kurtosis and approximate entropy values are calculated as the eigenvalues of fault diagnosis. Finally, fault diagnosis is executed based on the support vector machine (SVM). This method is applied for the fault diagnosis of high-speed rails, and experimental results show that the method presented in this paper is superior to the traditional EMD algorithm and greatly improves the accuracy of fault diagnosis.

摘要

针对高速列车振动信号复合故障检测这一难题,提出了一种基于四次C Hermite插值的改进经验模态分解(EMD)算法的早期故障诊断方法。首先,利用四次C Hermite插值改进的EMD算法对原始信号进行分解,得到本征模态函数(IMF)分量。其次,对IMF分量进行奇异值分解以确定信号的主分量。然后,对信号进行重构,并计算峭度和近似熵值作为故障诊断的特征值。最后,基于支持向量机(SVM)进行故障诊断。该方法应用于高速列车的故障诊断,实验结果表明本文提出的方法优于传统的EMD算法,大大提高了故障诊断的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81de/6696217/b451b03a6059/sensors-19-03300-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验