Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
Computational Process Engineering Research Laboratory, Chulalongkorn University, Bangkok 10330, Thailand.
Int J Mol Sci. 2019 Jul 26;20(15):3678. doi: 10.3390/ijms20153678.
Rechargeable zinc-air batteries are deemed as the most feasible alternative to replace lithium-ion batteries in various applications. Among battery components, separators play a crucial role in the commercial realization of rechargeable zinc-air batteries, especially from the viewpoint of preventing zincate (Zn(OH)) ion crossover from the zinc anode to the air cathode. In this study, a new hydroxide exchange membrane for zinc-air batteries was synthesized using poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) as the base polymer. PPO was quaternized using three tertiary amines, including trimethylamine (TMA), 1-methylpyrolidine (MPY), and 1-methylimidazole (MIM), and casted into separator films. The successful synthesis process was confirmed by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy, while their thermal stability was examined using thermogravimetric analysis. Besides, their water/electrolyte absorption capacity and dimensional change, induced by the electrolyte uptake, were studied. Ionic conductivity of PPO-TMA, PPO-MPY, and PPO-MIM was determined using electrochemical impedance spectroscopy to be 0.17, 0.16, and 0.003 mS/cm, respectively. Zincate crossover evaluation tests revealed very low zincate diffusion coefficient of 1.13 × 10, and 0.28 × 10 cm/min for PPO-TMA, and PPO-MPY, respectively. Moreover, galvanostatic discharge performance of the primary batteries assembled using PPO-TMA and PPO-MPY as initial battery tests showed a high specific discharge capacity and specific power of ~800 mAh/g and 1000 mWh/g, respectively. Low zincate crossover and high discharge capacity of these separator membranes makes them potential materials to be used in zinc-air batteries.
可充锌空气电池被认为是替代各种应用中锂离子电池的最可行选择。在电池组件中,隔板在可充锌空气电池的商业化实现中起着至关重要的作用,特别是从阻止锌酸盐(Zn(OH))离子从锌阳极向空气阴极交叉的角度来看。在这项研究中,使用聚(2,6-二甲基-1,4-亚苯基氧化物)(PPO)作为基础聚合物合成了一种用于锌空气电池的新型氢氧化物交换膜。使用三种叔胺,包括三甲胺(TMA)、1-甲基吡咯烷(MPY)和 1-甲基咪唑(MIM)对 PPO 进行季铵化,并浇铸成隔板膜。质子核磁共振和傅里叶变换红外光谱证实了成功的合成过程,而热重分析则检查了它们的热稳定性。此外,还研究了电解质吸收引起的水/电解质吸收能力和尺寸变化。使用电化学阻抗谱法测定了 PPO-TMA、PPO-MPY 和 PPO-MIM 的离子电导率分别为 0.17、0.16 和 0.003 mS/cm。锌酸盐交叉评估测试表明,PPO-TMA 和 PPO-MPY 的锌酸盐扩散系数非常低,分别为 1.13×10 和 0.28×10 cm/min。此外,使用 PPO-TMA 和 PPO-MPY 作为初始电池测试组装的原电池的恒电流放电性能表明,它们具有高比放电容量和比功率,分别约为 800 mAh/g 和 1000 mWh/g。这些隔板膜具有低的锌酸盐交叉和高的放电容量,这使得它们成为锌空气电池的潜在材料。