Suppr超能文献

应用于头颈癌治疗后手术结果审计的机器学习方法。

Machine learning methods applied to audit of surgical outcomes after treatment for cancer of the head and neck.

作者信息

Tighe D, Lewis-Morris T, Freitas A

机构信息

EKHUFT, United Kingdom.

School of Computing, University of Kent, CT2 7NF, United Kingdom.

出版信息

Br J Oral Maxillofac Surg. 2019 Oct;57(8):771-777. doi: 10.1016/j.bjoms.2019.05.026. Epub 2019 Jul 26.

Abstract

Most surgical specialties have attempted to address concerns about unfair comparison of outcomes by "risk-adjusting" data to benchmark specialty-specific outcomes that are indicative of the quality of care. We are building on previous work in head and neck surgery to address the current need for a robust validated means of risk adjustment. A dataset of care episodes, which were recorded as a clinical audit of complications after operations for squamous cell carcinoma (SCC) of the head and neck (n=1254), was analysed with the Waikarto Environment for Knowledge Analysis (WEKA) machine learning tool. This produced 4 classification models that could predict complications using data on the preoperative demographics of the patients, operation, functional status, and tumour stage. Three of them performed acceptably: one that predicted "any complication" within 30 days (area under the receiver operating characteristic curve (AUROC) 0.72), one that predicted severe complications (Clavien-Dindo grade 3 or above) within 30 days (AUROC 0.70), and one that predicted a prolonged duration of hospital stay of more than 15 days, (AUROC 0.81). The final model, which was developed on a subgroup of patients who had free tissue transfer (n=443), performed poorly (AUROC 0.59). Subspecialty groups within oral and maxillofacial surgery are seeking metrics that will allow a meaningful comparison of the quality of care delivered by surgical units in the UK. For these metrics to be effective they must show variation between units and be amendable to change by service personnel. Published baseline data must also be available. They should be modelled effectively so that meaningful comparison, which takes account of variations in the complexity of the patients' needs or care, is possible.

摘要

大多数外科专业都试图通过对数据进行“风险调整”来解决对结果不公平比较的担忧,以便为反映护理质量的特定专业结果设定基准。我们在头颈外科先前工作的基础上,以满足当前对强大的、经过验证的风险调整方法的需求。对头颈鳞状细胞癌(SCC)手术后并发症的临床审计记录的护理事件数据集(n = 1254),使用怀卡托知识分析环境(WEKA)机器学习工具进行了分析。这产生了4个分类模型,这些模型可以使用患者术前人口统计学、手术、功能状态和肿瘤分期的数据来预测并发症。其中3个模型表现尚可:一个预测30天内“任何并发症”(受试者操作特征曲线下面积(AUROC)为0.72),一个预测30天内严重并发症(Clavien-Dindo 3级或以上)(AUROC为0.70),还有一个预测住院时间延长超过15天(AUROC为0.81)。在接受游离组织移植的患者亚组(n = 443)上开发的最终模型表现不佳(AUROC为0.59)。口腔颌面外科的亚专业组正在寻找能够对英国外科单位提供的护理质量进行有意义比较的指标。为了使这些指标有效,它们必须显示各单位之间的差异,并且服务人员可以对其进行修改。还必须有已公布的基线数据。它们应该得到有效建模,以便能够进行有意义的比较,同时考虑到患者需求或护理复杂性的差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验