Suppr超能文献

采用双深度Q学习提高超表面全息图的效率

Double-deep Q-learning to increase the efficiency of metasurface holograms.

作者信息

Sajedian Iman, Lee Heon, Rho Junsuk

机构信息

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.

Department of Materials Science and Engineering, Korea University, Seoul, 02842, Republic of Korea.

出版信息

Sci Rep. 2019 Jul 29;9(1):10899. doi: 10.1038/s41598-019-47154-z.

Abstract

We use a double deep Q-learning network (DDQN) to find the right material type and the optimal geometrical design for metasurface holograms to reach high efficiency. The DDQN acts like an intelligent sweep and could identify the optimal results in ~5.7 billion states after only 2169 steps. The optimal results were found between 23 different material types and various geometrical properties for a three-layer structure. The computed transmission efficiency was 32% for high-quality metasurface holograms; this is two times bigger than the previously reported results under the same conditions. The found structure is transmission-type and polarization-independent and works in the visible region.

摘要

我们使用双深度Q学习网络(DDQN)来寻找超表面全息图的合适材料类型和最优几何设计,以实现高效率。DDQN的作用类似于智能扫描,仅经过2169步就能在约57亿个状态中识别出最优结果。在三层结构的23种不同材料类型和各种几何特性之间找到了最优结果。高质量超表面全息图的计算传输效率为32%;这比在相同条件下之前报道的结果高出两倍。所找到的结构是透射型且与偏振无关,并且在可见光区域工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa8e/6662763/d5d9f8f3ffb3/41598_2019_47154_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验