Department of Electrical Engineering, Information Technology University of the Punjab, Lahore, 54000, Pakistan.
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Sci Rep. 2018 Feb 5;8(1):2443. doi: 10.1038/s41598-018-20748-9.
Utilizing solar energy requires perfect absorption of light by the photovoltaic cells, particularly solar thermophotovoltaics (STPVs), which can be eventually converted into useful electrical energy. Ultrathin nanostructures, named metasurfaces, provide an intriguing platform to develop the miniaturized solar energy absorbers that can find potential applications in integrated photonics, optical sensing, color imaging, thermal imaging and electromagnetic shielding. Therefore, the quest of novel materials and designs to develop highly efficient absorbers at minuscule scale is an open topic. In this paper, novel absorbers using tungsten-metasurface are developed which give ultrahigh absorbance over a wide frequency spectrum. The proposed designs are two-dimensional, polarization insensitive, broadband and are predicted to give better response under high temperatures ascribed to high melting point of tungsten i.e. 3422 °C. Amongst these designs, cross alignment is found optimum for tungsten, because it is impedance matched with the free space for visible spectrum. This cross arrangement is further tweaked by changing width, height and length resulting in 7 different optimized solutions giving an average absorbance greater than 98%. One, amongst these solutions, gave a maximum average absorbance of 99.3%.
利用太阳能需要光伏电池对光的完美吸收,特别是太阳能热光伏(STPV),它最终可以转化为有用的电能。超薄纳米结构,称为超表面,为开发可在集成光子学、光学传感、彩色成像、热成像和电磁屏蔽中找到潜在应用的小型化太阳能吸收器提供了一个有趣的平台。因此,开发在微小尺度上具有高效吸收器的新型材料和设计是一个开放的课题。在本文中,开发了使用钨超表面的新型吸收器,在较宽的光谱范围内具有超高吸收率。所提出的设计是二维的、偏振不敏感的、宽带的,并预计在高温下会有更好的响应,这归因于钨的高熔点,即 3422°C。在这些设计中,交叉排列被发现是钨的最佳选择,因为它与可见光的自由空间阻抗匹配。通过改变宽度、高度和长度进一步调整这种交叉排列,得到了 7 种不同的优化解决方案,平均吸收率大于 98%。其中一个解决方案的平均吸收率最大为 99.3%。