Suppr超能文献

蝙蝠 2 网络:一种使用音频传感器数据实时分类蝙蝠物种回声定位信号的框架。

Bat2Web: A Framework for Real-Time Classification of Bat Species Echolocation Signals Using Audio Sensor Data.

机构信息

Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates.

Nature & Ecosystem Restoration, Soudah Development, Riyadh 13519, Saudi Arabia.

出版信息

Sensors (Basel). 2024 May 1;24(9):2899. doi: 10.3390/s24092899.

Abstract

Bats play a pivotal role in maintaining ecological balance, and studying their behaviors offers vital insights into environmental health and aids in conservation efforts. Determining the presence of various bat species in an environment is essential for many bat studies. Specialized audio sensors can be used to record bat echolocation calls that can then be used to identify bat species. However, the complexity of bat calls presents a significant challenge, necessitating expert analysis and extensive time for accurate interpretation. Recent advances in neural networks can help identify bat species automatically from their echolocation calls. Such neural networks can be integrated into a complete end-to-end system that leverages recent internet of things (IoT) technologies with long-range, low-powered communication protocols to implement automated acoustical monitoring. This paper presents the design and implementation of such a system that uses a tiny neural network for interpreting sensor data derived from bat echolocation signals. A highly compact convolutional neural network (CNN) model was developed that demonstrated excellent performance in bat species identification, achieving an F1-score of 0.9578 and an accuracy rate of 97.5%. The neural network was deployed, and its performance was evaluated on various alternative edge devices, including the NVIDIA Jetson Nano and Google Coral.

摘要

蝙蝠在维持生态平衡方面发挥着关键作用,研究它们的行为为环境健康提供了重要的见解,并有助于保护工作。确定环境中各种蝙蝠物种的存在对于许多蝙蝠研究至关重要。专门的音频传感器可用于记录蝙蝠的回声定位叫声,然后可用于识别蝙蝠物种。然而,蝙蝠叫声的复杂性带来了重大挑战,需要专家进行分析,并花费大量时间进行准确解释。最近在神经网络方面的进展可以帮助自动从其回声定位叫声中识别蝙蝠物种。这种神经网络可以集成到一个完整的端到端系统中,该系统利用最近的物联网 (IoT) 技术和远程、低功耗通信协议来实现自动化声学监测。本文介绍了这样一个系统的设计和实现,该系统使用微小的神经网络来解释来自蝙蝠回声定位信号的传感器数据。开发了一个高度紧凑的卷积神经网络 (CNN) 模型,该模型在蝙蝠物种识别方面表现出色,F1 得分为 0.9578,准确率为 97.5%。部署了神经网络,并在各种替代边缘设备上评估了其性能,包括 NVIDIA Jetson Nano 和 Google Coral。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9613/11086295/377ca279498c/sensors-24-02899-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验