Suppr超能文献

ACTINN:单细胞 RNA 测序中细胞类型的自动识别。

ACTINN: automated identification of cell types in single cell RNA sequencing.

机构信息

Molecular Biology Institute, University of California, Los Angeles, CA, USA.

Institute of Genomics and Proteomics, University of California, Los Angeles, CA, USA.

出版信息

Bioinformatics. 2020 Jan 15;36(2):533-538. doi: 10.1093/bioinformatics/btz592.

Abstract

MOTIVATION

Cell type identification is one of the major goals in single cell RNA sequencing (scRNA-seq). Current methods for assigning cell types typically involve the use of unsupervised clustering, the identification of signature genes in each cluster, followed by a manual lookup of these genes in the literature and databases to assign cell types. However, there are several limitations associated with these approaches, such as unwanted sources of variation that influence clustering and a lack of canonical markers for certain cell types. Here, we present ACTINN (Automated Cell Type Identification using Neural Networks), which employs a neural network with three hidden layers, trains on datasets with predefined cell types and predicts cell types for other datasets based on the trained parameters.

RESULTS

We trained the neural network on a mouse cell type atlas (Tabula Muris Atlas) and a human immune cell dataset, and used it to predict cell types for mouse leukocytes, human PBMCs and human T cell sub types. The results showed that our neural network is fast and accurate, and should therefore be a useful tool to complement existing scRNA-seq pipelines.

AVAILABILITY AND IMPLEMENTATION

The codes and datasets are available at https://figshare.com/articles/ACTINN/8967116. Tutorial is available at https://github.com/mafeiyang/ACTINN. All codes are implemented in python.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

细胞类型鉴定是单细胞 RNA 测序(scRNA-seq)的主要目标之一。目前用于分配细胞类型的方法通常涉及使用无监督聚类,在每个聚类中识别特征基因,然后在文献和数据库中手动查找这些基因以分配细胞类型。然而,这些方法存在几个限制,例如影响聚类的不必要的变异源和某些细胞类型缺乏规范标记。在这里,我们提出了 ACTINN(使用神经网络的自动细胞类型鉴定),它使用具有三个隐藏层的神经网络,在具有预定义细胞类型的数据集上进行训练,并根据训练参数预测其他数据集的细胞类型。

结果

我们在小鼠细胞图谱(Tabula Muris Atlas)和人类免疫细胞数据集上训练神经网络,并将其用于预测小鼠白细胞、人 PBMC 和人类 T 细胞亚型的细胞类型。结果表明,我们的神经网络快速准确,因此应该是补充现有 scRNA-seq 管道的有用工具。

可用性和实现

代码和数据集可在 https://figshare.com/articles/ACTINN/8967116 上获得。教程可在 https://github.com/mafeiyang/ACTINN 上获得。所有代码均使用 Python 实现。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验