OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Int J Cancer. 2020 Jul 15;147(2):472-477. doi: 10.1002/ijc.32598. Epub 2019 Aug 19.
Recent clinical data have linked KRAS/TP53 comutation (mut) to resistance to radiotherapy (RT), but supporting laboratory in vivo evidence is lacking. In addition, the ability of different radiation doses, with/without epidermal growth factor receptor (EGFR)-directed treatment, to achieve local tumor control as a function of KRAS status is unknown. Here, we assessed clonogenic radiation survival of a panel of annotated lung cancer cell lines. KRASmut/TP53mut was associated with the highest radioresistance in nonisogenic and isogenic comparisons. To validate these findings, isogenic TP53mut NCI-H1703 models, KRASmut or wild-type (wt), were grown as heterotopic xenografts in nude mice. A clinical RT schedule of 30 fractions over 6 weeks was employed. The dose that controlled 50% of tumors (TCD ) was calculated. The TCD for KRASwt/TP53mut xenografts was 43.1 Gy whereas KRASmut/TP53mut tumors required a 1.9-fold higher TCD of 81.4 Gy. The EGFR inhibitor erlotinib radiosensitized KRASmut but not KRASwt cells and xenografts. The TCD associated with adding erlotinib to RT was 58.8 Gy for KRASmut, that is, a ~1.4-fold dose enhancement. However, the EGFR antibody cetuximab did not have a radiosensitizing effect. In conclusion, we demonstrate for the first time that KRASmut in a TP53mut background confers radioresistance when studying a clinical RT schedule and local control rather than tumor growth delay. Despite the known unresponsiveness of KRASmut tumors to EGFR inhibitors, erlotinib radiosensitized KRASmut tumors. Our data highlight KRAS/TP53 comutation as a candidate biomarker of radioresistance that can be at least partially reversed by dose escalation or the addition of a targeted agent.
最近的临床数据将 KRAS/TP53 共突变(mut)与对放射治疗(RT)的抵抗联系起来,但缺乏支持的实验室体内证据。此外,不同辐射剂量、是否联合表皮生长因子受体(EGFR)靶向治疗,以及 KRAS 状态作为局部肿瘤控制的能力尚不清楚。在这里,我们评估了一组注释肺癌细胞系的克隆辐射存活能力。非同源和同源比较中,KRASmut/TP53mut 与最高放射抗性相关。为了验证这些发现,我们构建了 KRASmut 或野生型(wt)的同源 TP53mut NCI-H1703 模型,并在裸鼠中作为异质异种移植生长。采用临床 RT 方案,6 周内 30 个分数。计算控制 50%肿瘤(TCD)的剂量。KRASwt/TP53mut 异种移植物的 TCD 为 43.1 Gy,而 KRASmut/TP53mut 肿瘤则需要高 1.9 倍的 TCD 81.4 Gy。EGFR 抑制剂厄洛替尼增敏 KRASmut,但不增敏 KRASwt 细胞和异种移植物。加入厄洛替尼进行 RT 的 TCD 为 58.8 Gy,即约 1.4 倍剂量增强。然而,EGFR 抗体西妥昔单抗没有放射增敏作用。总之,我们首次证明,在研究临床 RT 方案和局部控制而不是肿瘤生长延迟时,KRASmut 在 TP53mut 背景下赋予放射抗性。尽管已知 KRASmut 肿瘤对 EGFR 抑制剂无反应,但厄洛替尼增敏 KRASmut 肿瘤。我们的数据强调了 KRAS/TP53 共突变作为放射抗性的候选生物标志物,该标志物至少可以通过剂量递增或添加靶向药物来部分逆转。