Suppr超能文献

使用基于深度学习的高分辨率发射率模型和带有小型无人机系统(sUAS)信息的双源能量平衡模型估算蒸散量和能量通量。

Estimation of Evapotranspiration and Energy Fluxes using a Deep-Learning based High-Resolution Emissivity Model and the Two-Source Energy Balance Model with sUAS information.

作者信息

Torres-Rua Alfonso, Ticlavilca Andres M, Aboutalebi Mahyar, Nieto Hector, Alsina Maria Mar, White Alex, Prueger John H, Alfieri Joseph, Hipps Lawrence, McKee Lynn, Kustas William, Coopmans Calvin, Dokoozlian Nick

机构信息

Utah State University, Old Main Hill, Logan, UT 84322.

Ocean Associates, Inc. Santa Rosa, CA 95404.

出版信息

Proc SPIE Int Soc Opt Eng. 2020 Jun 2;11414. doi: 10.1117/12.2558824. Epub 2020 May 14.

Abstract

Surface temperature is necessary for the estimation of energy fluxes and evapotranspiration from satellites and airborne data sources. For example, the Two-Source Energy Balance (TSEB) model uses thermal information to quantify canopy and soil temperatures as well as their respective energy balance components. While surface (also called kinematic) temperature is desirable for energy balance analysis, obtaining this temperature is not straightforward due to a lack of spatially estimated narrowband (sensor-specific) and broadband emissivities of vegetation and soil, further complicated by spectral characteristics of the UAV thermal camera. This study presents an effort to spatially model narrowband and broadband emissivities for a microbolometer thermal camera at UAV information resolution (~0.15 m) based on Landsat and NASA HyTES information using a deep learning (DL) model. The DL model is calibrated using equivalent optical Landsat / UAV spectral information to spatially estimate narrowband emissivity values of vegetation and soil in the 7-14-nm range at UAV resolution. The resulting DL narrowband emissivity values were then used to estimate broadband emissivity based on a developed narrowband-broadband emissivity relationship using the MODIS UCSB Emissivity Library database. The narrowband and broadband emissivities were incorporated into the TSEB model to determine their impact on the estimation of instantaneous energy balance components against ground measurements. The proposed effort was applied to information collected by the Utah State University AggieAir small Unmanned Aerial Systems (sUAS) Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) over a vineyard located in Lodi, California. A comparison of resulting energy balance component estimates, with and without the inclusion of high-resolution narrowband and broadband emissivities, against eddy covariance (EC) measurements under different scenarios are presented and discussed.

摘要

地表温度对于从卫星和航空数据源估算能量通量和蒸散量至关重要。例如,双源能量平衡(TSEB)模型利用热信息来量化冠层和土壤温度及其各自的能量平衡组成部分。虽然地表(也称为运动学)温度对于能量平衡分析很有必要,但由于缺乏植被和土壤的空间估计窄带(特定传感器)和宽带发射率,获取该温度并非易事,而无人机热成像仪的光谱特性又进一步增加了复杂性。本研究基于陆地卫星和美国国家航空航天局(NASA)的高光谱热红外地表发射率探测仪(HyTES)信息,利用深度学习(DL)模型,努力在无人机信息分辨率(约0.15米)下对微测辐射热计热成像仪的窄带和宽带发射率进行空间建模。使用等效光学陆地卫星/无人机光谱信息对DL模型进行校准,以在无人机分辨率下空间估计7 - 14纳米范围内植被和土壤的窄带发射率值。然后,基于利用中分辨率成像光谱仪(MODIS)加州大学圣巴巴拉分校发射率库数据库建立的窄带 - 宽带发射率关系,将所得的DL窄带发射率值用于估算宽带发射率。将窄带和宽带发射率纳入TSEB模型,以确定它们对相对于地面测量的瞬时能量平衡组成部分估计的影响。所提出的工作应用于犹他州立大学阿吉航空小型无人机系统(sUAS)项目收集的信息,该项目是美国农业部农业研究局葡萄遥感大气剖面和蒸散实验(GRAPEX项目)的一部分,研究区域位于加利福尼亚州洛迪的一个葡萄园。给出并讨论了在不同场景下,包含和不包含高分辨率窄带和宽带发射率时所得能量平衡组成部分估计值与涡度相关(EC)测量值的比较。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验