Suppr超能文献

稳定用于低碳烯烃的铁基费托催化剂的活性相:机理与策略

Stabilizing the active phase of iron-based Fischer-Tropsch catalysts for lower olefins: mechanism and strategy.

作者信息

Zhuo Ou, Yang Lijun, Gao Fujie, Xu Bolian, Wu Qiang, Fan Yining, Zhang Yu, Jiang Yufei, Huang Runsheng, Wang Xizhang, Hu Zheng

机构信息

Key Laboratory of Mesoscopic Chemistry of MOE , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . Email:

School of Physics , Nanjing University , Nanjing 210093 , China.

出版信息

Chem Sci. 2019 May 20;10(24):6083-6090. doi: 10.1039/c9sc01210a. eCollection 2019 Jun 28.

Abstract

Fischer-Tropsch synthesis of lower olefins (FTO) is a classical yet modern topic of great significance in which the supported Fe-based nanoparticles are the most promising catalysts. The performance deterioration of catalysts is a big challenge due to the instability of the nanosized active phase of iron carbides. Herein, by mass spectrometry, theoretical analysis, and atmospheric- and high-pressure experimental examinations, we revealed the Ostwald-ripening-like growth mechanism of the active phase of iron carbides in FTO, which involves the cyclic formation-decomposition of iron carbonyl intermediates to transport iron species from small particles to large ones. Accordingly, by suppressing the formation of iron carbonyl species with a high-N-content carbon support, the size and structure of the active phase were regulated and stabilized, and durable iron-based catalysts were conveniently obtained with the highest selectivity for lower olefins up to 54.1%. This study provides a practical strategy for exploring advanced FTO catalysts.

摘要

费托合成低碳烯烃(FTO)是一个经典而又具有重大意义的现代课题,其中负载型铁基纳米颗粒是最具潜力的催化剂。由于碳化铁纳米活性相的不稳定性,催化剂性能恶化是一个巨大挑战。在此,通过质谱分析、理论分析以及常压和高压实验研究,我们揭示了FTO中碳化铁活性相的类奥斯特瓦尔德熟化生长机制,该机制涉及羰基铁中间体的循环形成 - 分解,以将铁物种从小颗粒传输到大颗粒。因此,通过用高氮含量的碳载体抑制羰基铁物种的形成,活性相的尺寸和结构得以调控和稳定,从而方便地获得了耐久性铁基催化剂,其对低碳烯烃的最高选择性可达54.1%。本研究为探索先进的FTO催化剂提供了一种实用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b8/6585598/3919db3821a8/c9sc01210a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验